
Lecture 15

Dijkstra’s Algorithm (contd.)

Source: CLRS
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Maintain a set of explored vertices  for which algorithm has found :S d[u] = δ(s, u)

Step 1: Initialise , .S = {s} d[s] = 0

Step 2: Choose an unexplored vertex  from  which minimizes:v V(G)∖S

π[v] = min
(u,v)∈E, u∈S

d[u] + w(u, v)

Add  to  and set .v S d[v] = Π[v]

Dijkstra’s Algorithm: Sketch

Step 3: Go to Step 2 if it can be performed.
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Idea: Start with  for every  and keep updating  values using above relation.π[v] = ∞ v ∈ V∖{s} π


