

Lecture 15

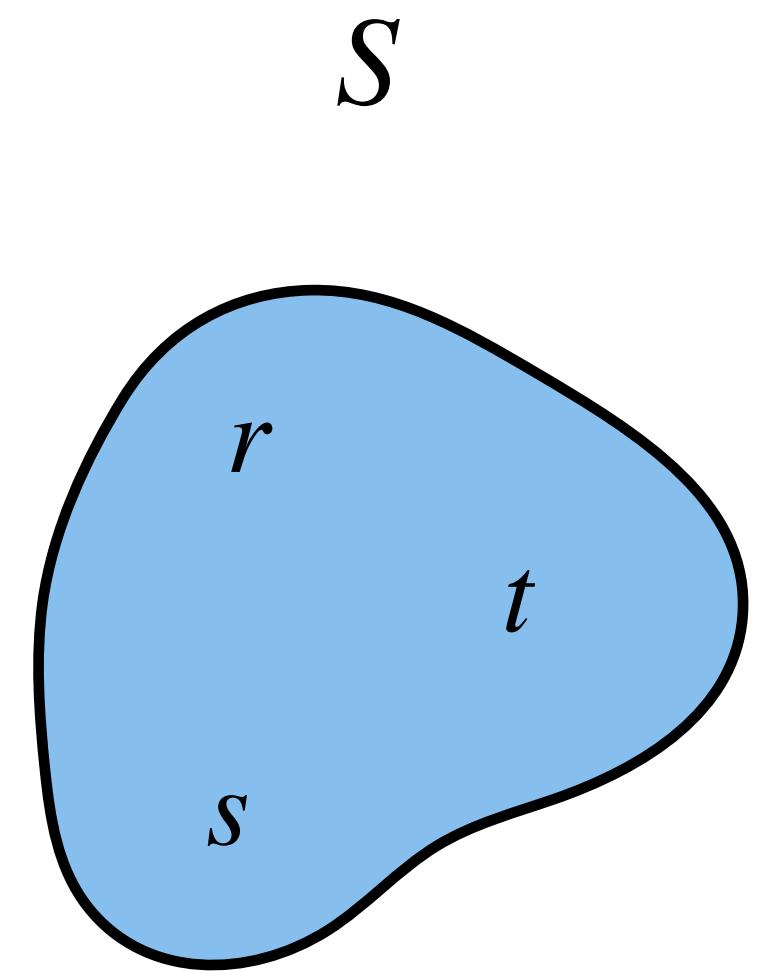
Dijkstra's Algorithm (contd.)

Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$

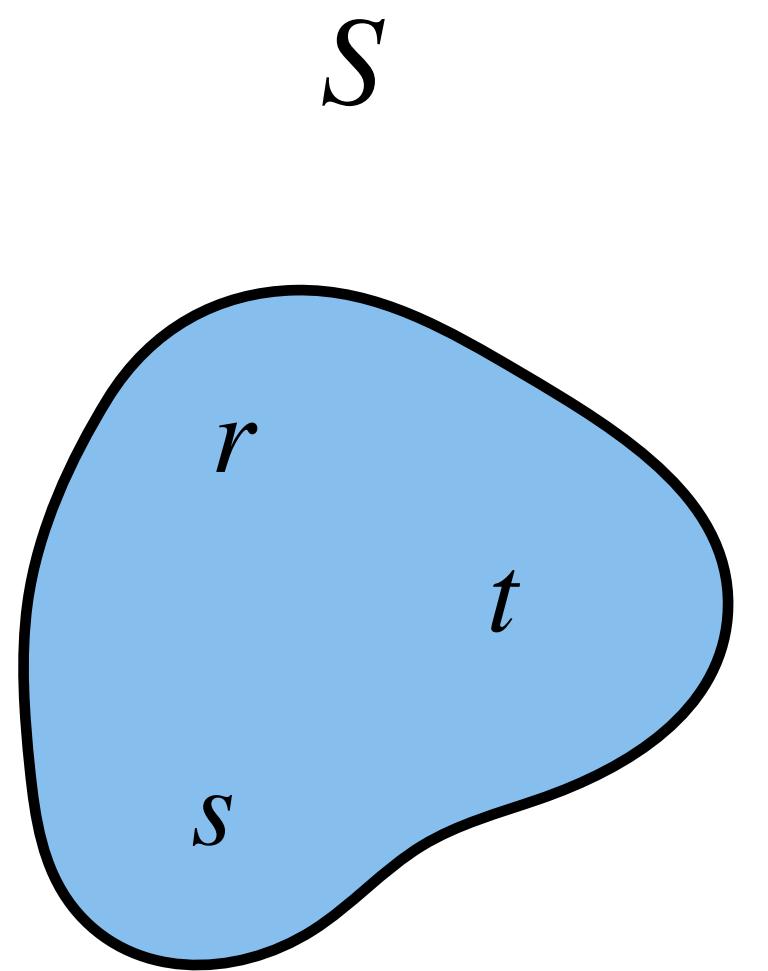
Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$



Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$

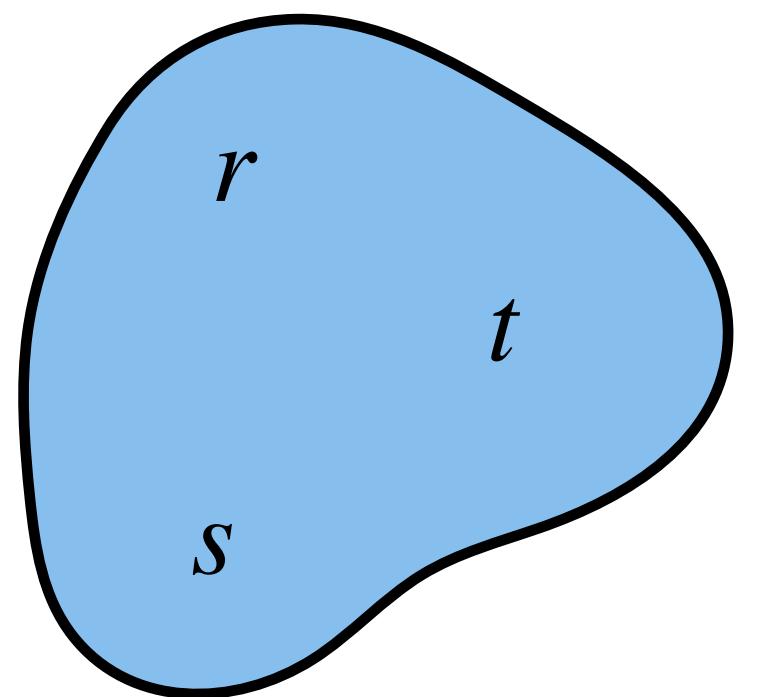


$$d[s] = 0, d[r] = 3, d[t] = 2$$

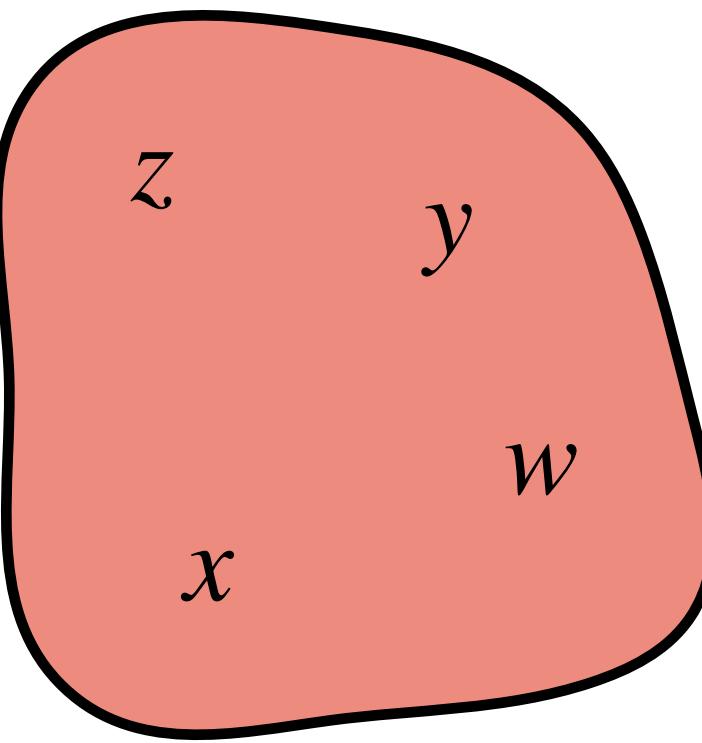
Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$

S



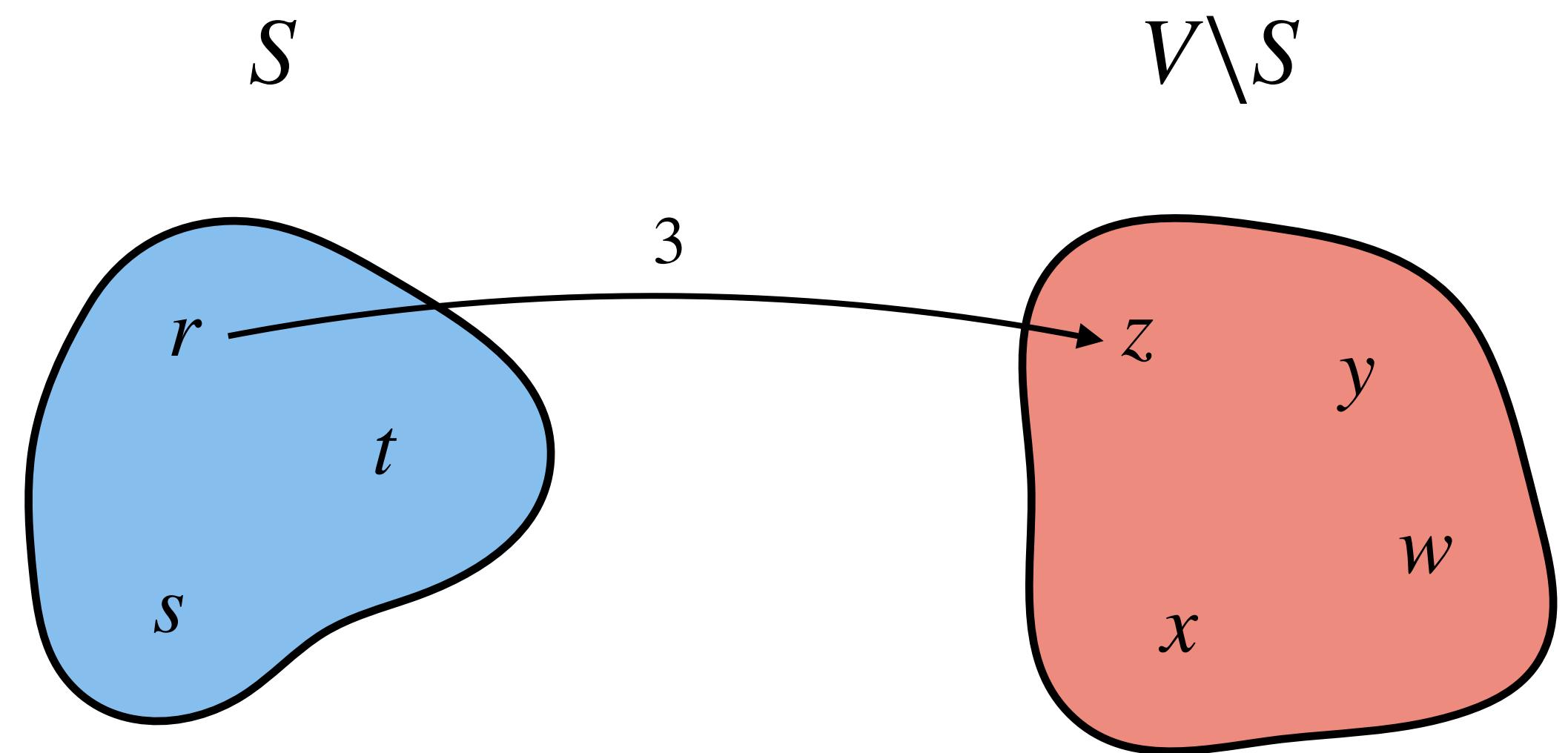
$V \setminus S$



$$d[s] = 0, d[r] = 3, d[t] = 2$$

Dijkstra's Algorithm: Sketch

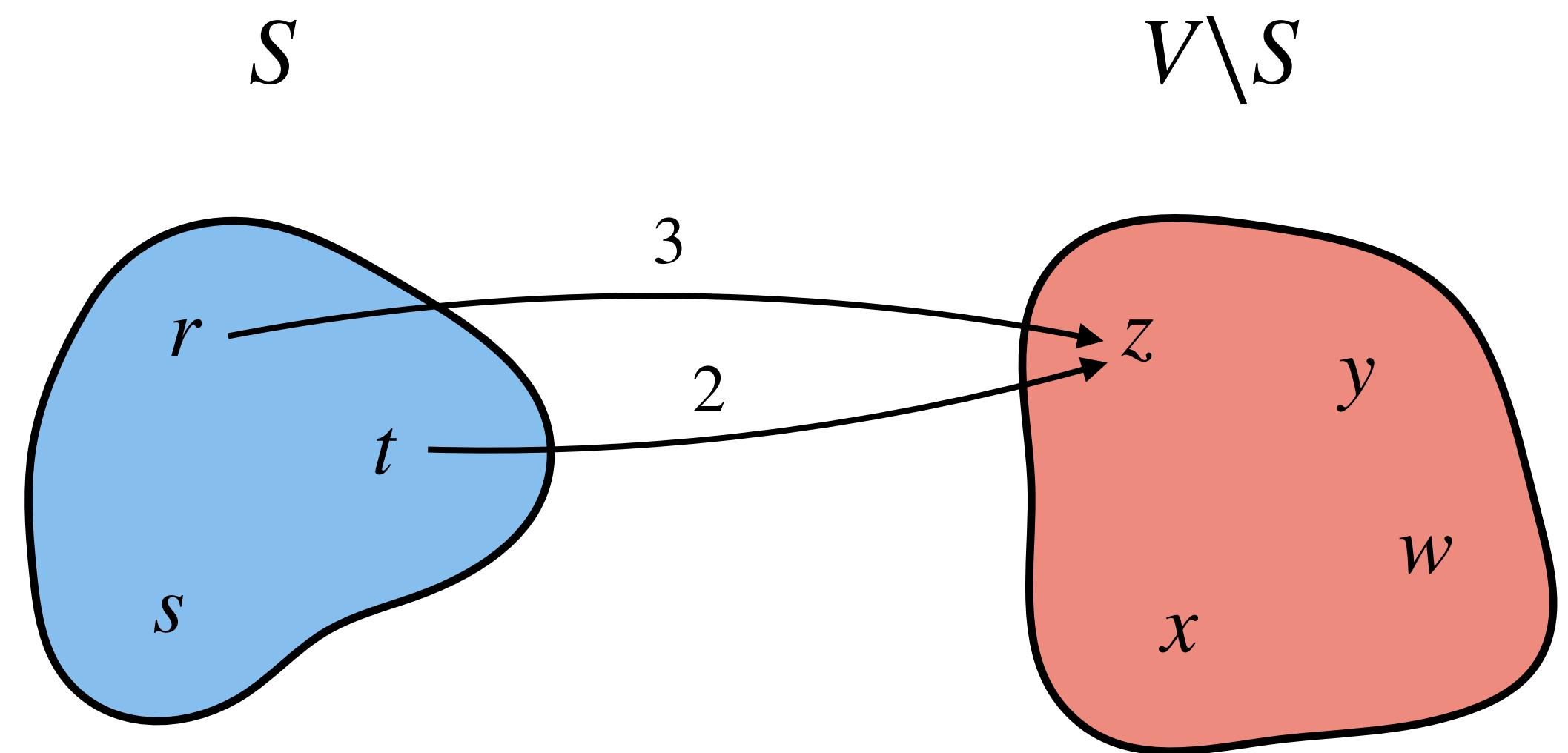
Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$



$$d[s] = 0, d[r] = 3, d[t] = 2$$

Dijkstra's Algorithm: Sketch

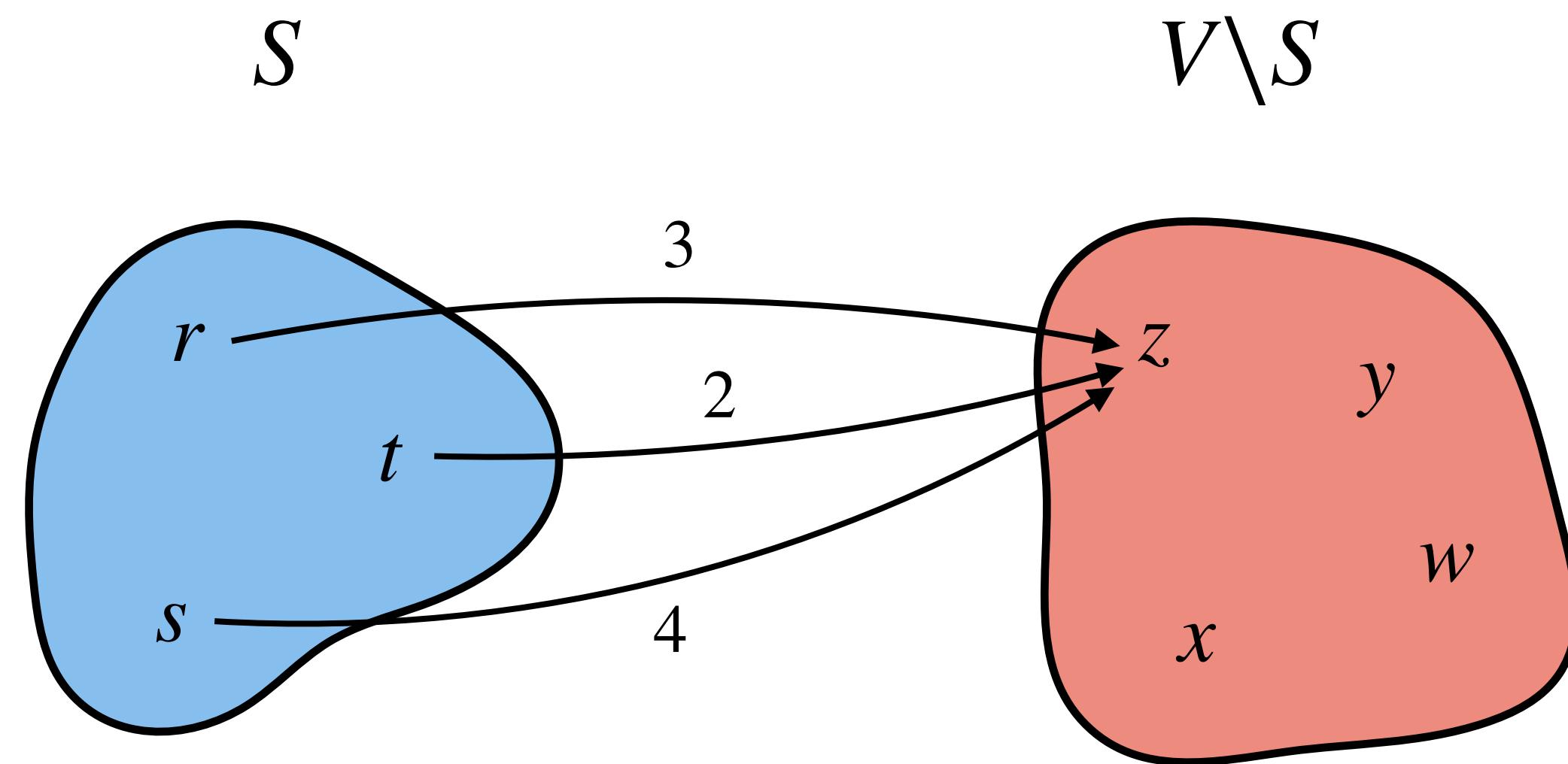
Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$



$$d[s] = 0, d[r] = 3, d[t] = 2$$

Dijkstra's Algorithm: Sketch

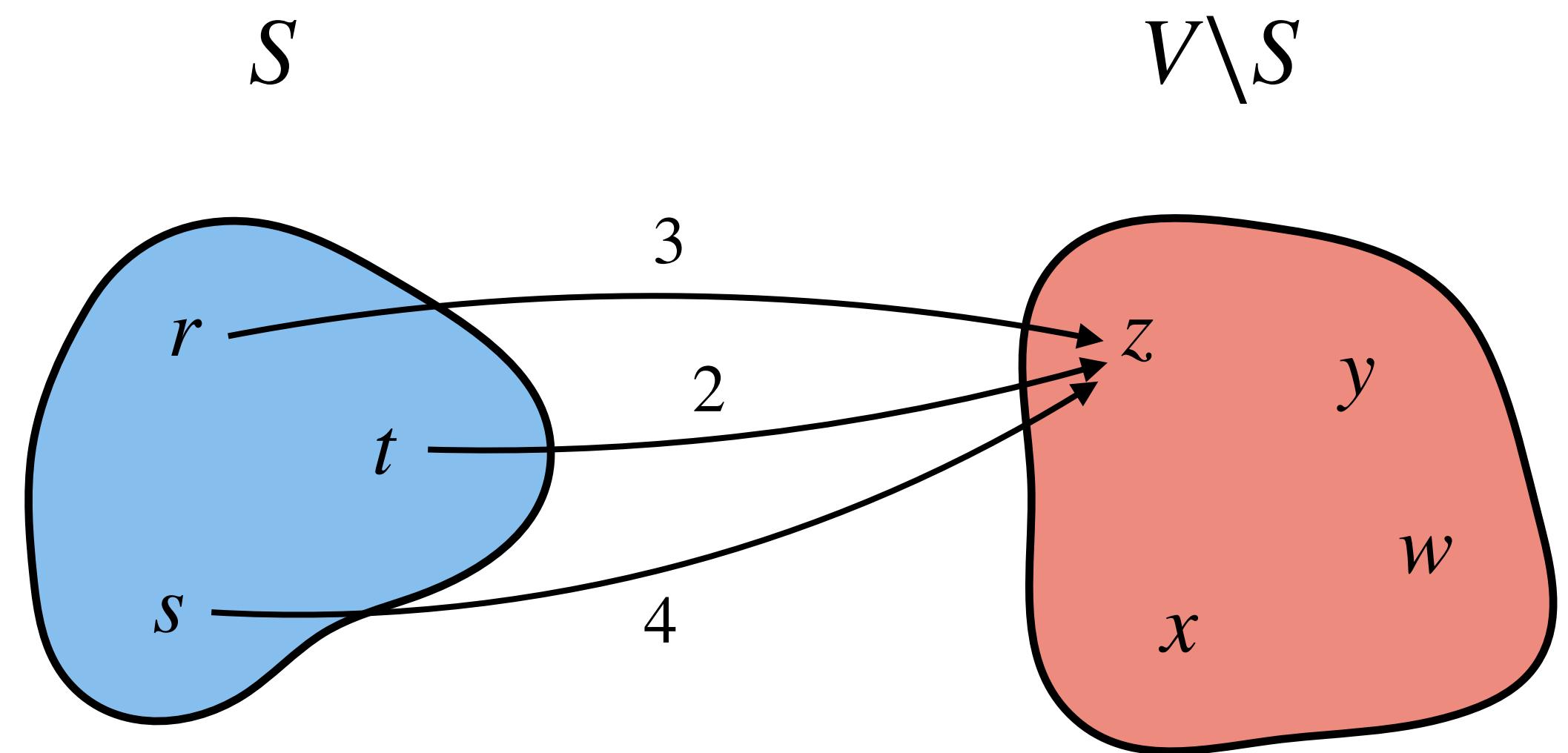
Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$



$$d[s] = 0, d[r] = 3, d[t] = 2$$

Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$

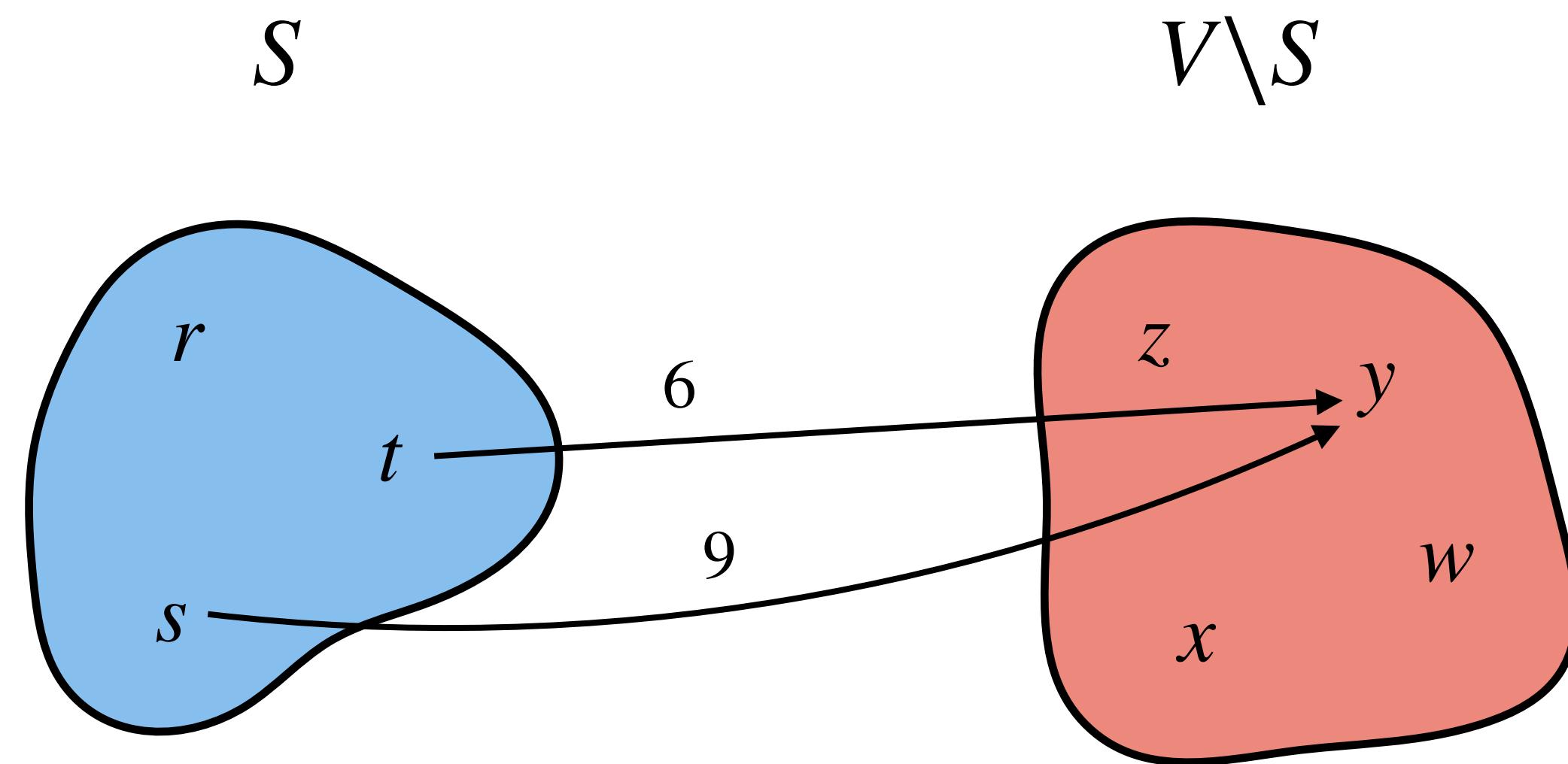


$$d[s] = 0, d[r] = 3, d[t] = 2$$

$$\pi[z] = 4$$

Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$

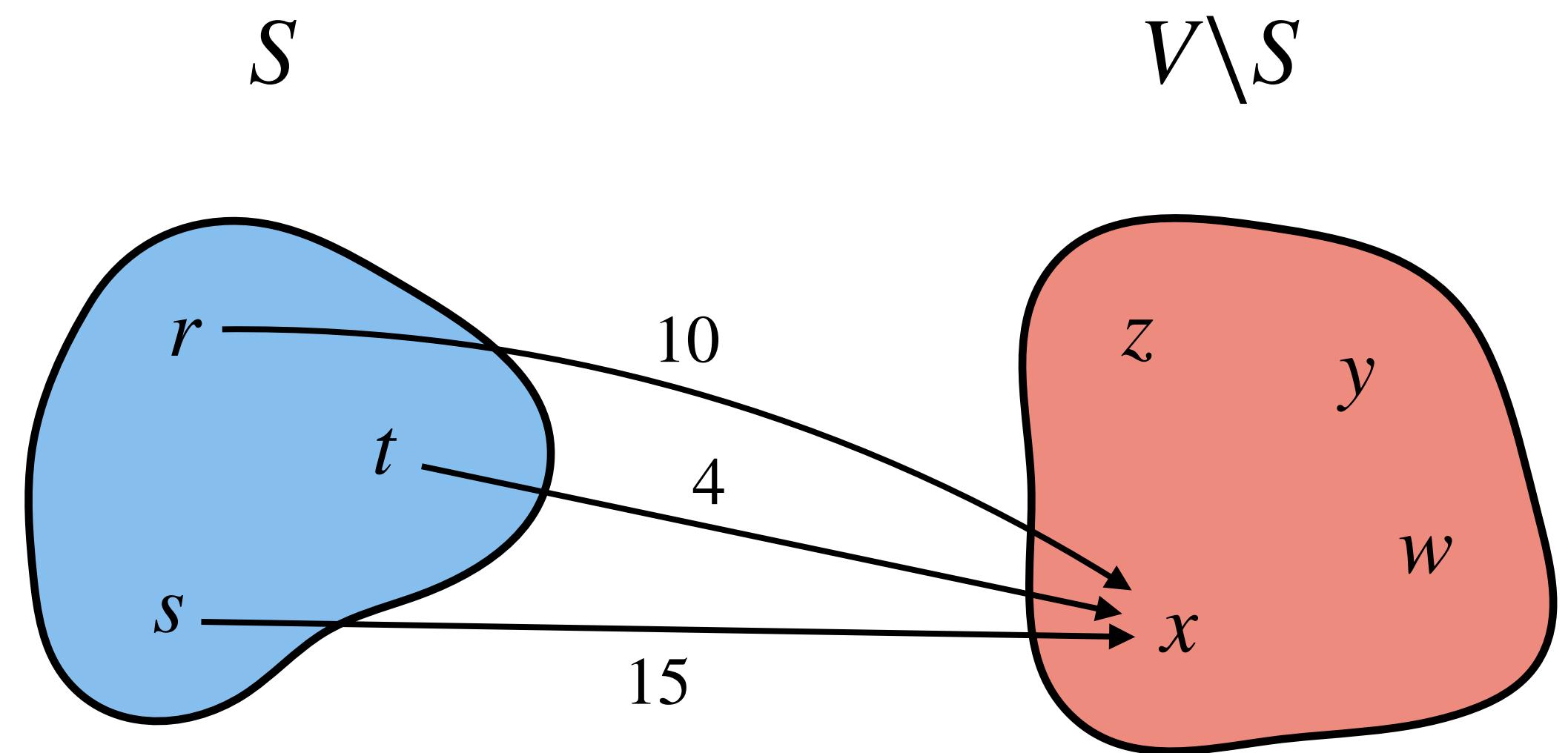


$$d[s] = 0, d[r] = 3, d[t] = 2$$

$$\pi[z] = 4, \pi[y] = 8,$$

Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$



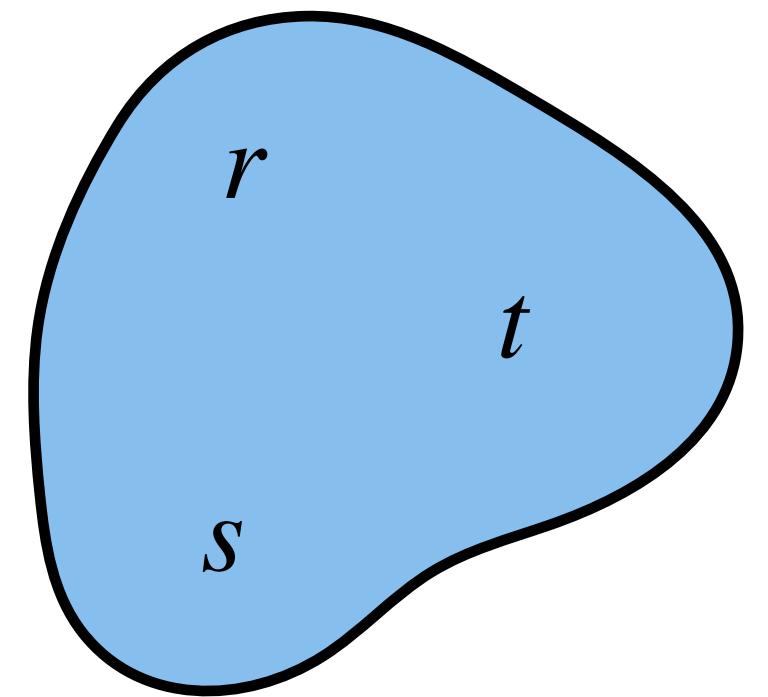
$$d[s] = 0, d[r] = 3, d[t] = 2$$

$$\pi[z] = 4, \pi[y] = 8, \pi[x] = 6,$$

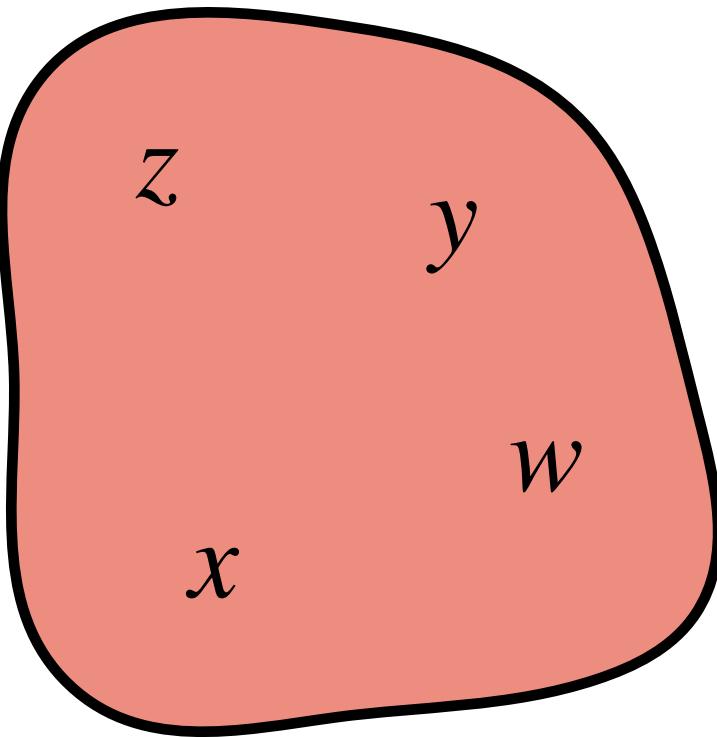
Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$

S



$V \setminus S$



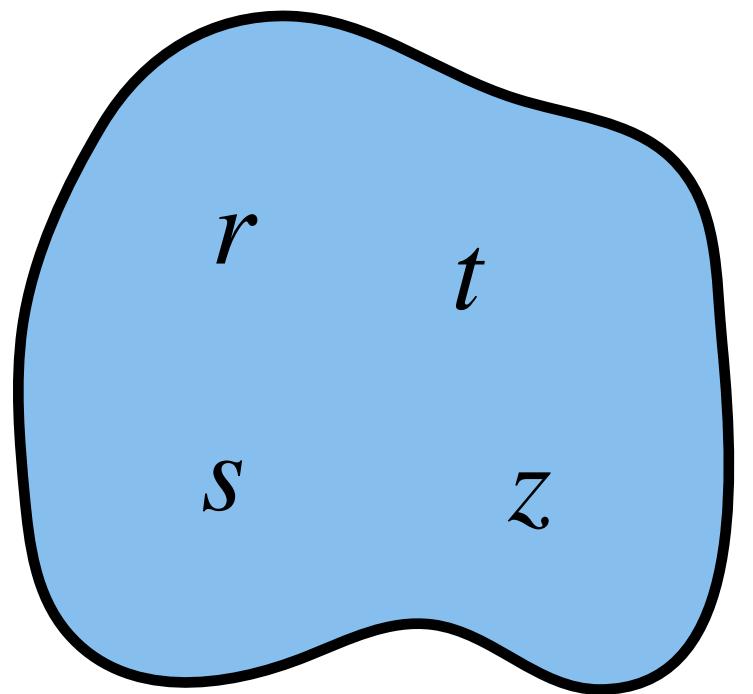
$d[s] = 0, d[r] = 3, d[t] = 2$

$\pi[z] = 4, \pi[y] = 8, \pi[x] = 6, \pi[w] = \text{Invalid}$

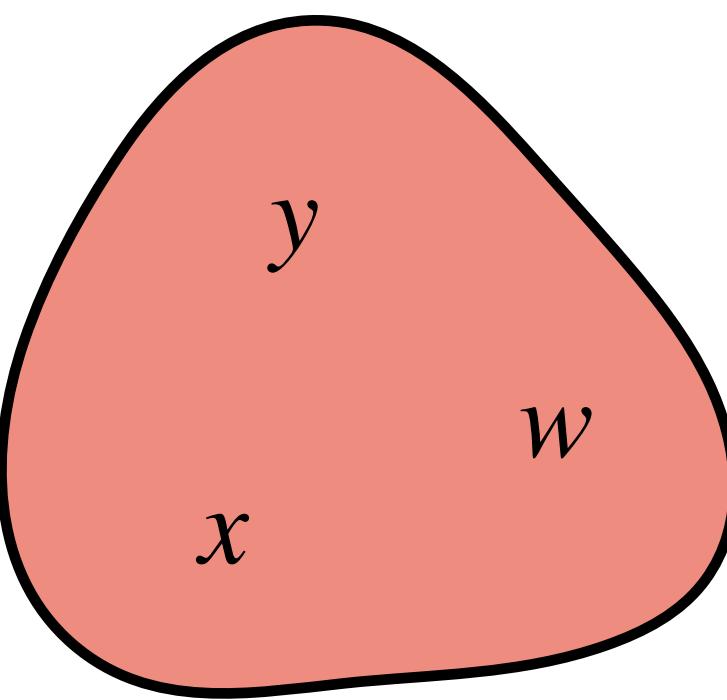
Dijkstra's Algorithm: Sketch

Computing $\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$

S



$V \setminus S$



$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

Dijkstra's Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found $d[u] = \delta(s, u)$:

Step 1: Initialise $S = \{s\}$, $d[s] = 0$.

Step 2: Choose an unexplored vertex v from $V(G) \setminus S$ which minimizes:

$$\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$$

Add v to S and set $d[v] = \pi[v]$.

Step 3: Go to **Step 2** if it can be performed.

Dijkstra's Algorithm: Correctness

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof:

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Basis Step: When $|S| = 1$, statement is trivially true as $S = \{s\}$ and $d[s] = 0 = \delta(s, s)$.

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

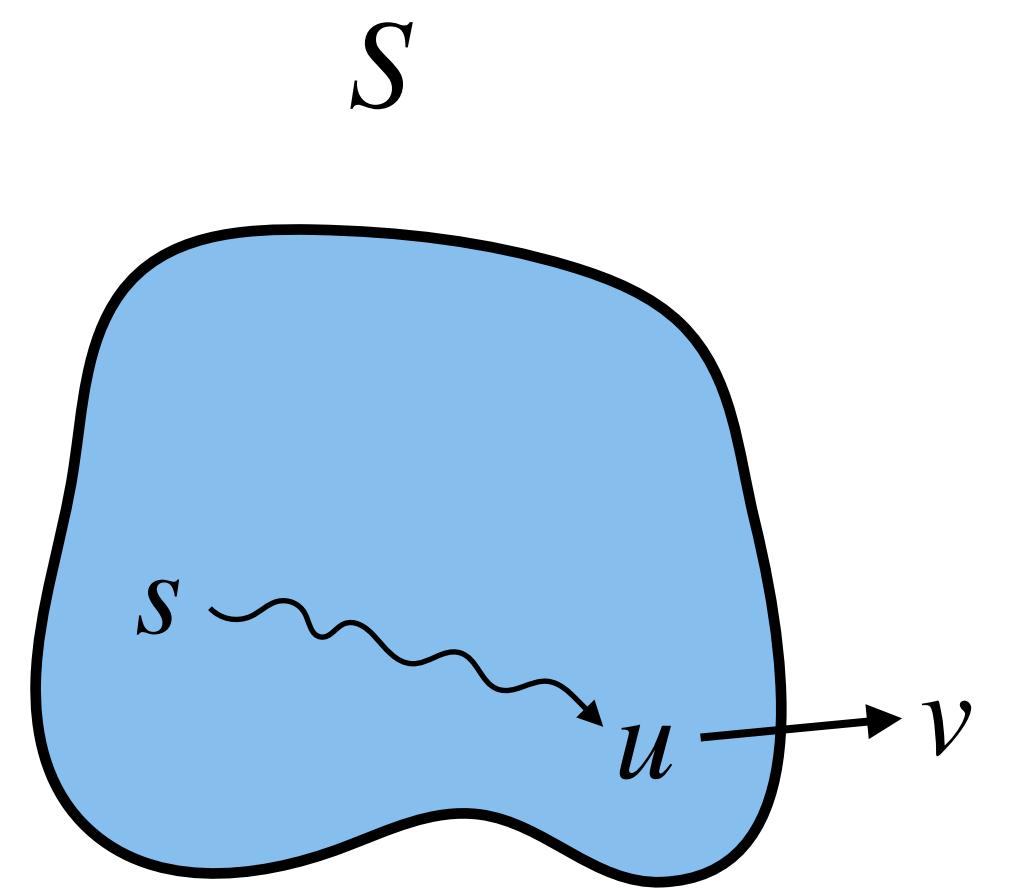
Let v be the next vertex to be added to S through edge (u, v) .

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .



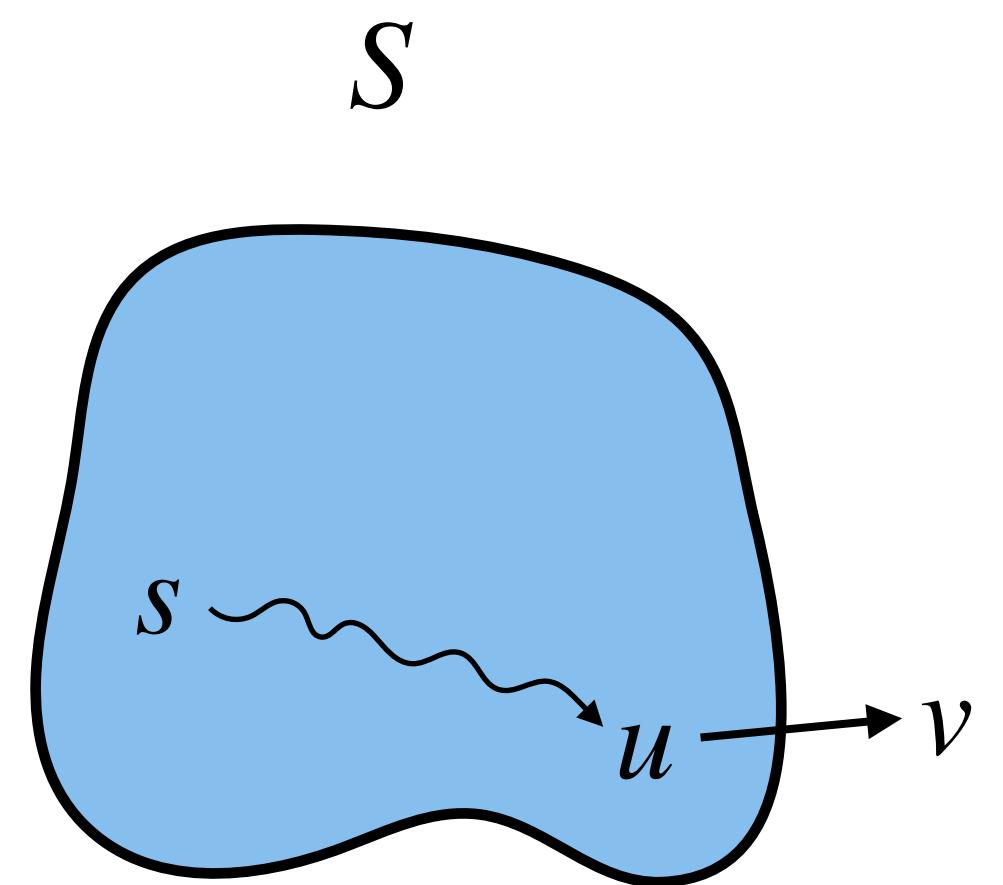
Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)



Dijkstra's Algorithm: Correctness

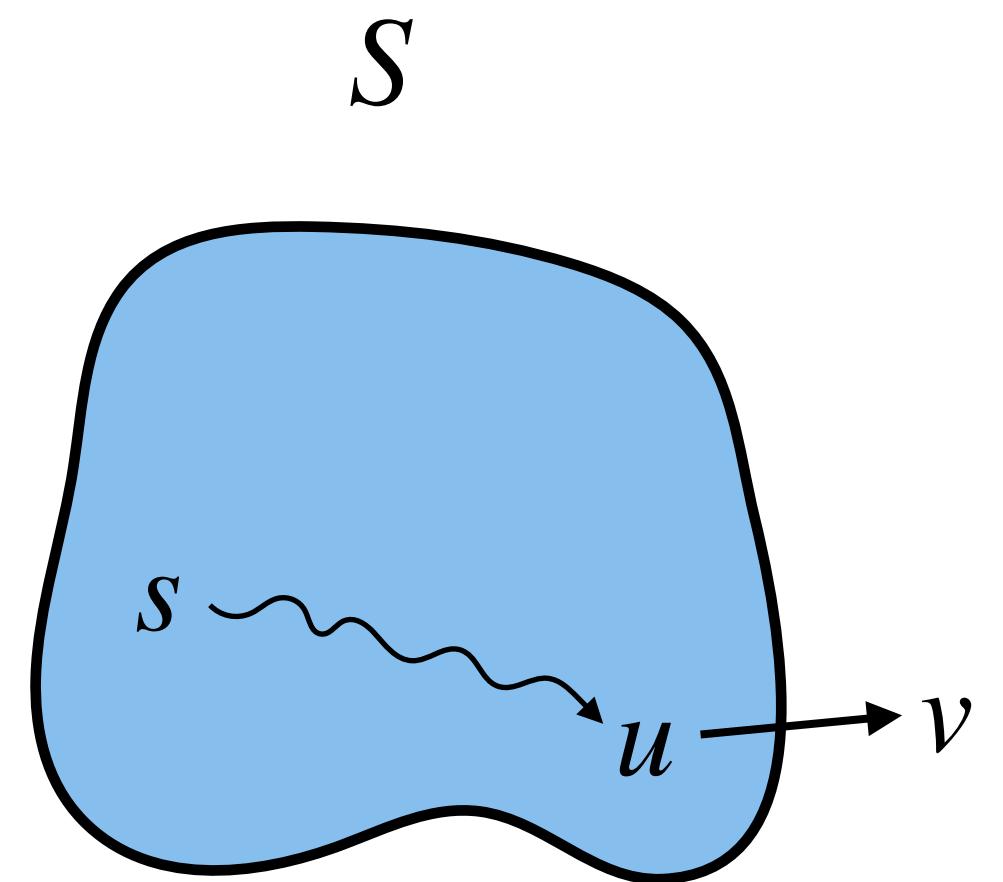
Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = \delta(s, u) + w(u, v)$$



Dijkstra's Algorithm: Correctness

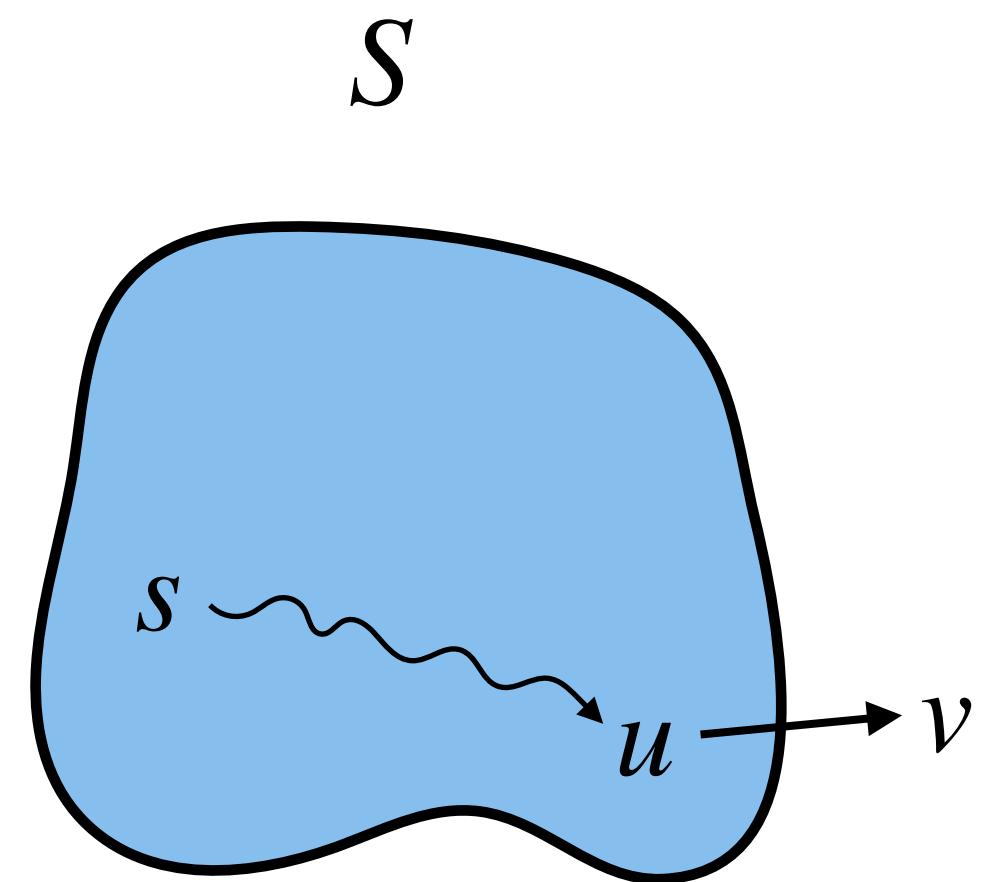
Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v)$$



Dijkstra's Algorithm: Correctness

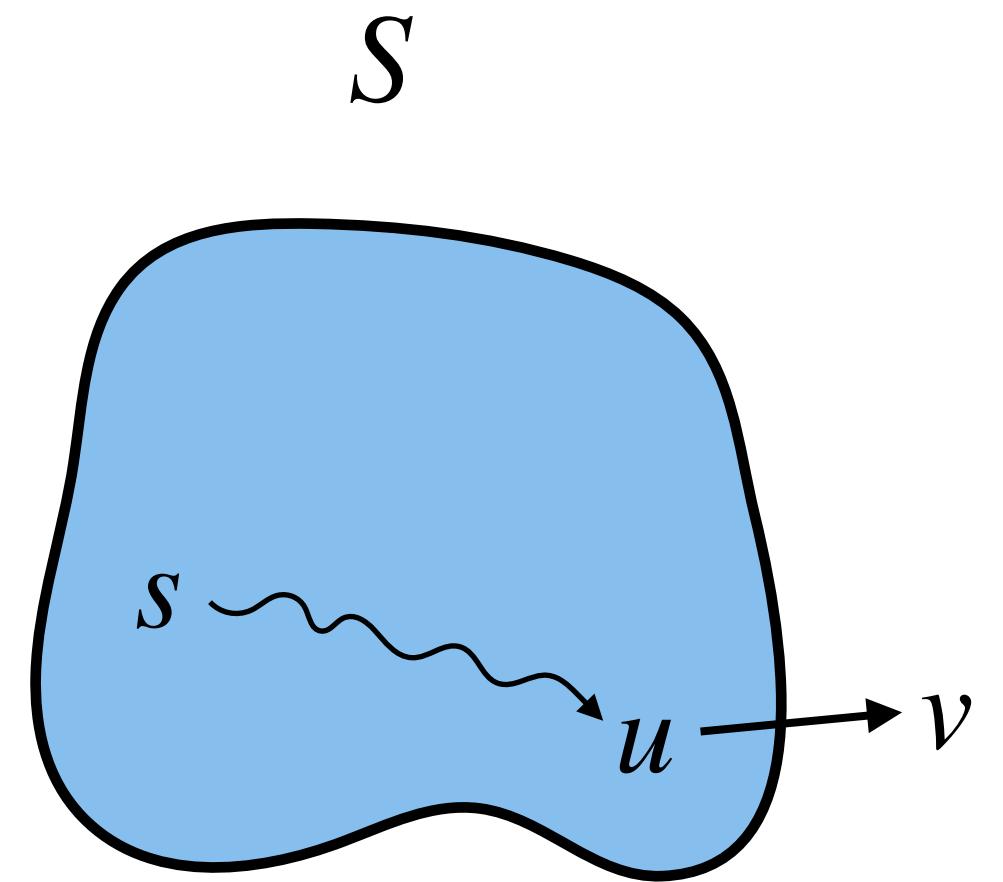
Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

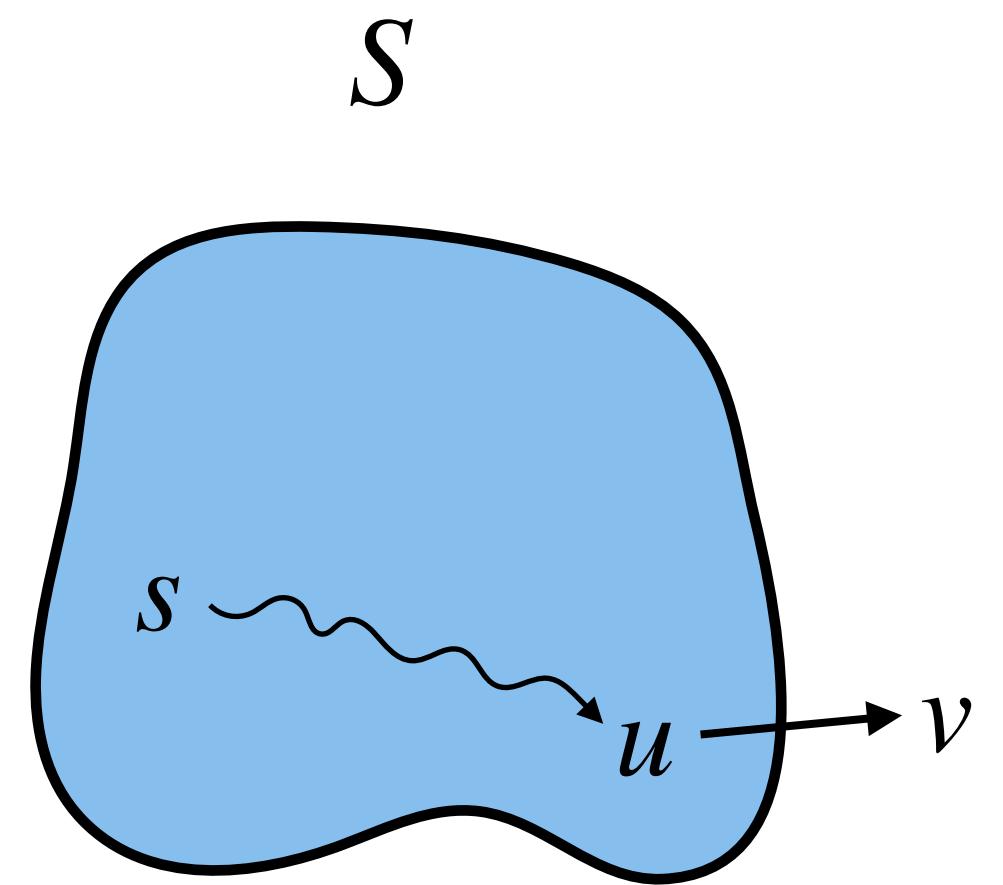
Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v .



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

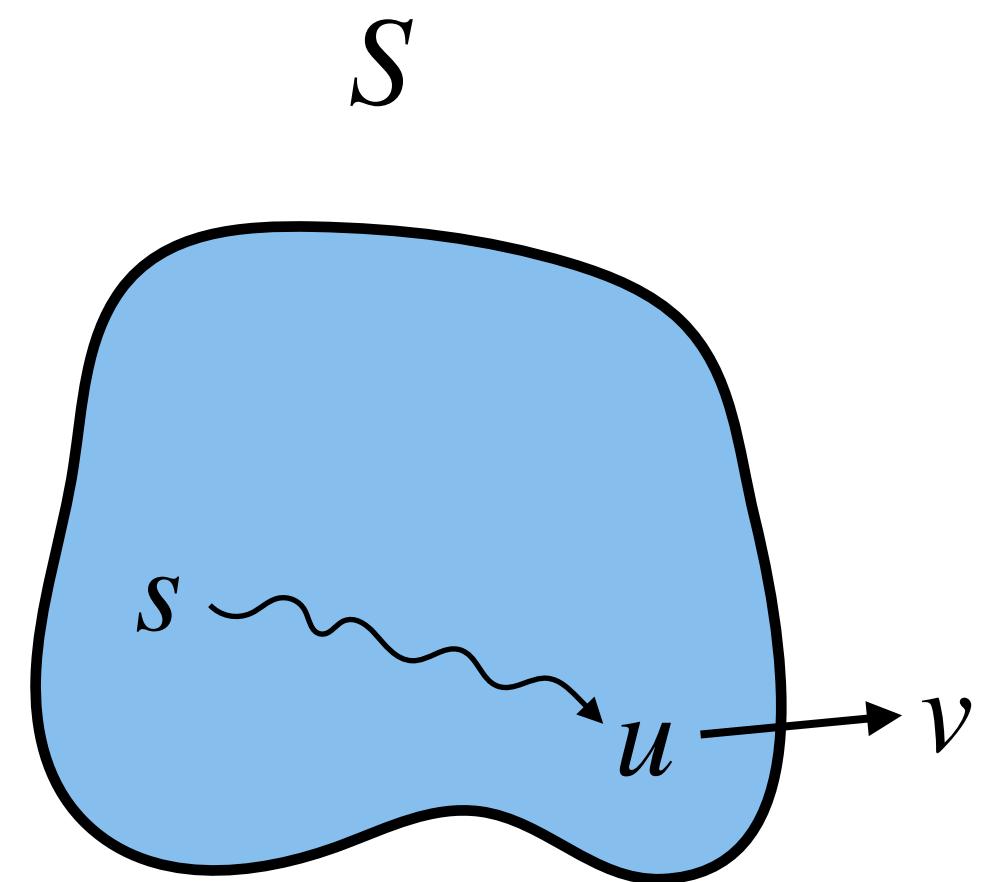
Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

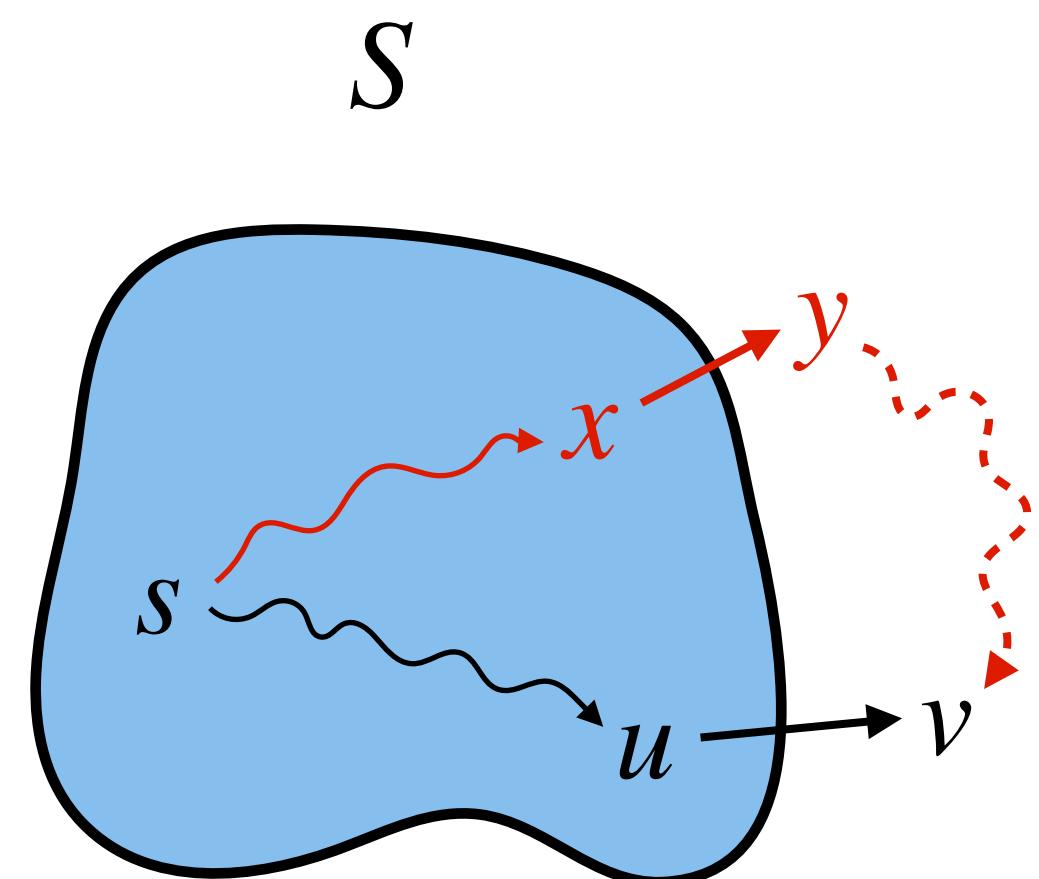
Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

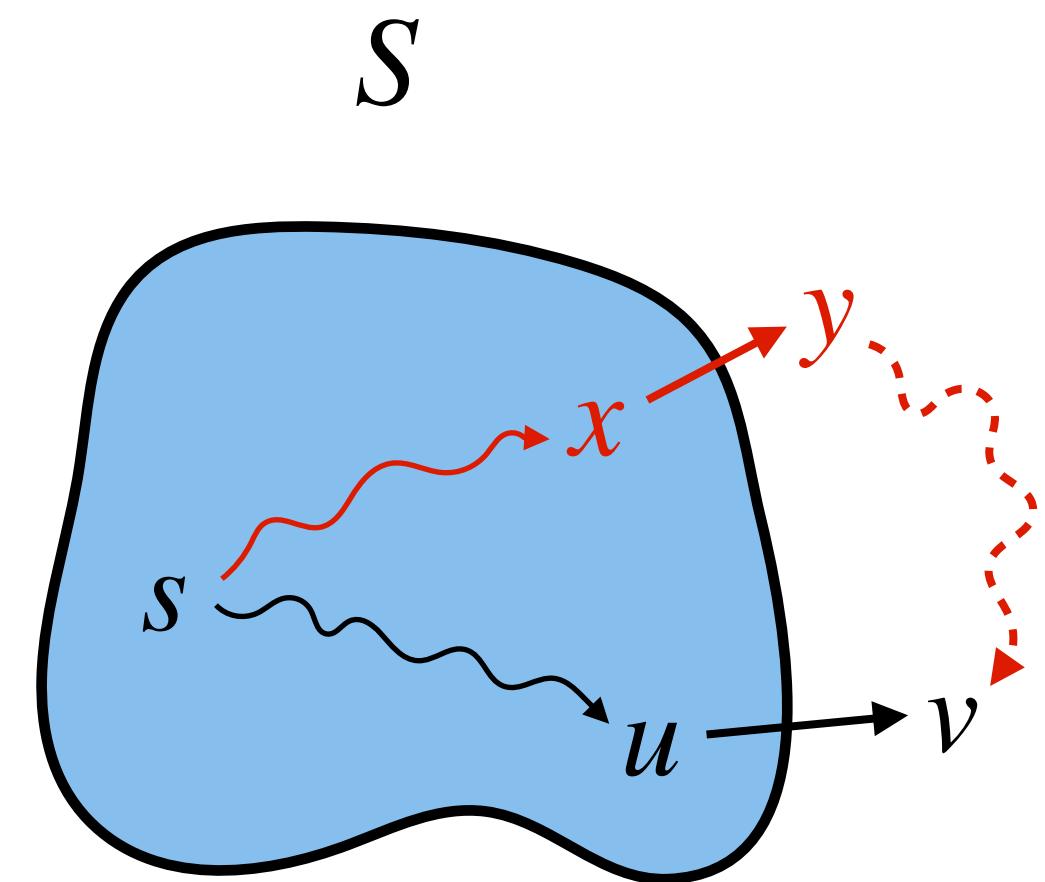
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v)$$



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

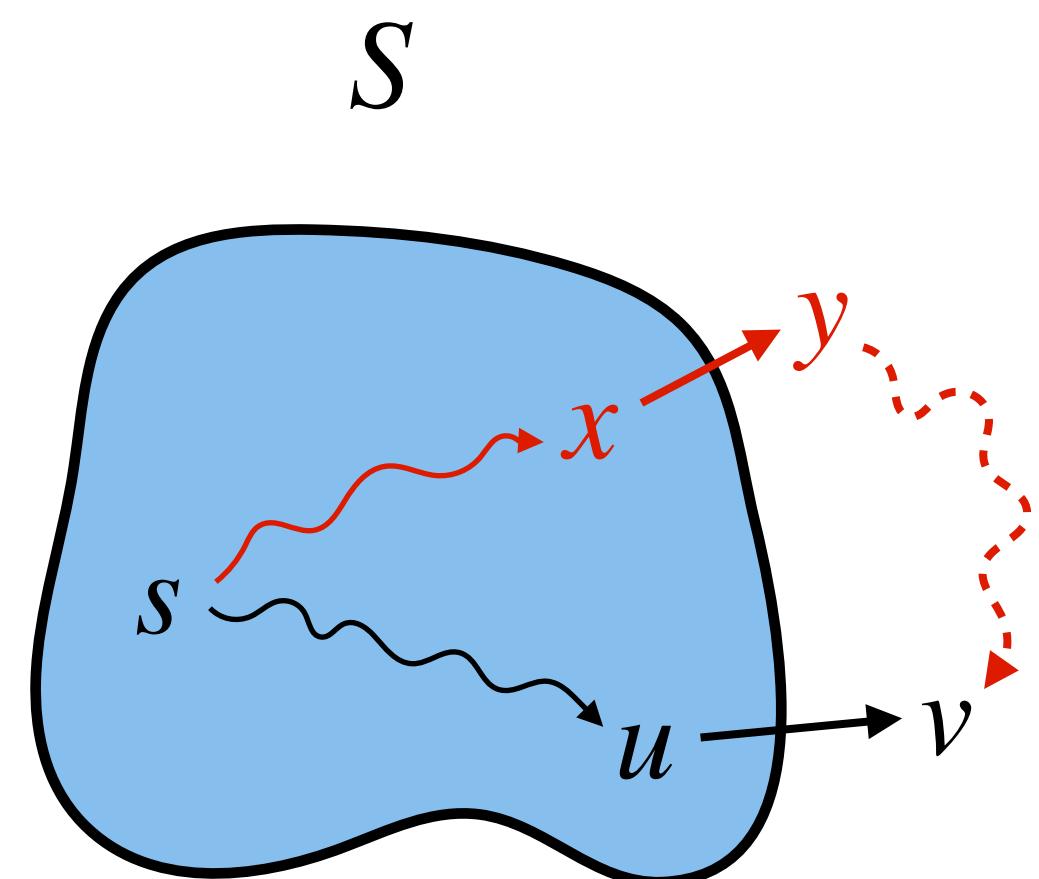
$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v)$$

Have shown above.



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

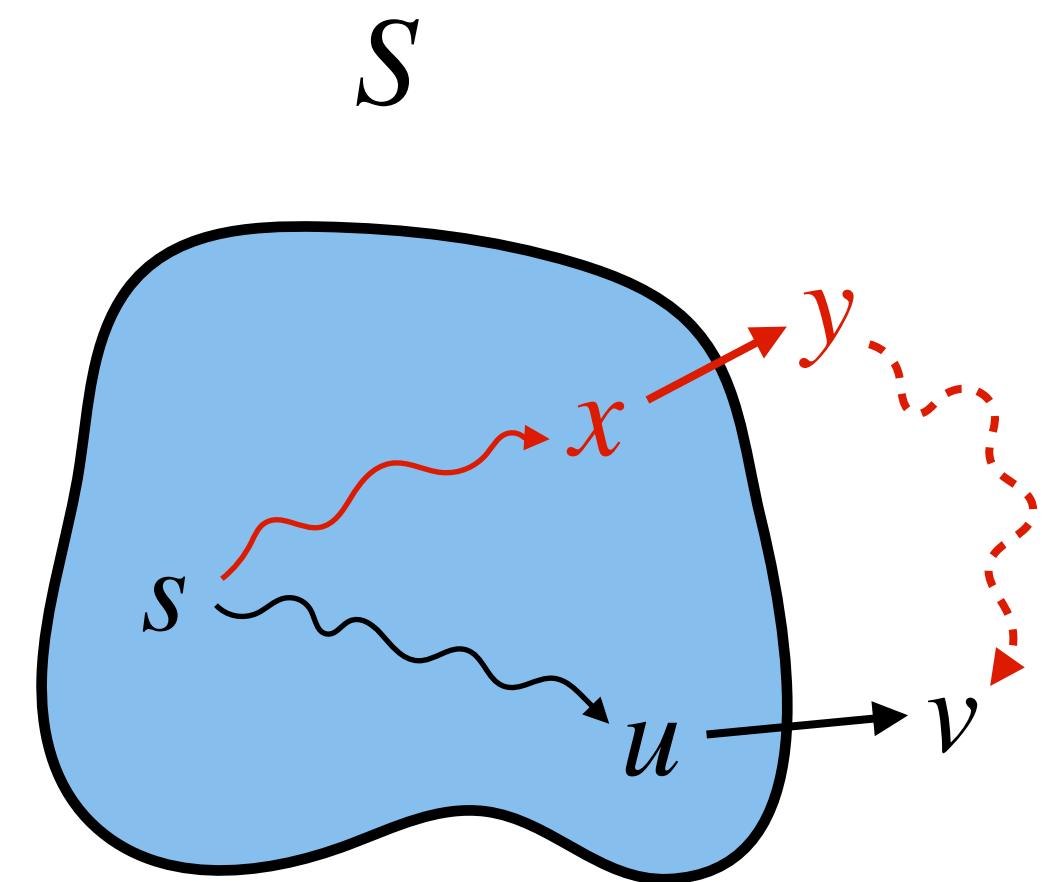
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y)$$



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

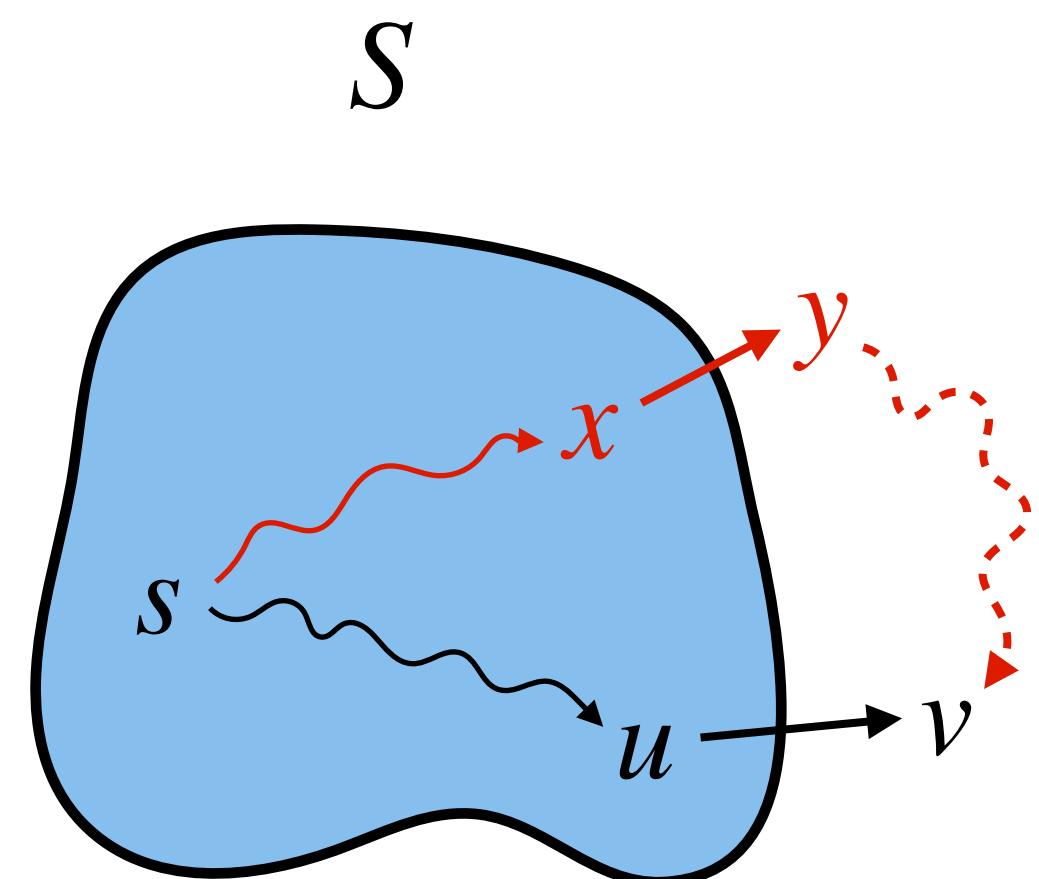
Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y)$$

↑

Because Dijkstra chose v over y



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

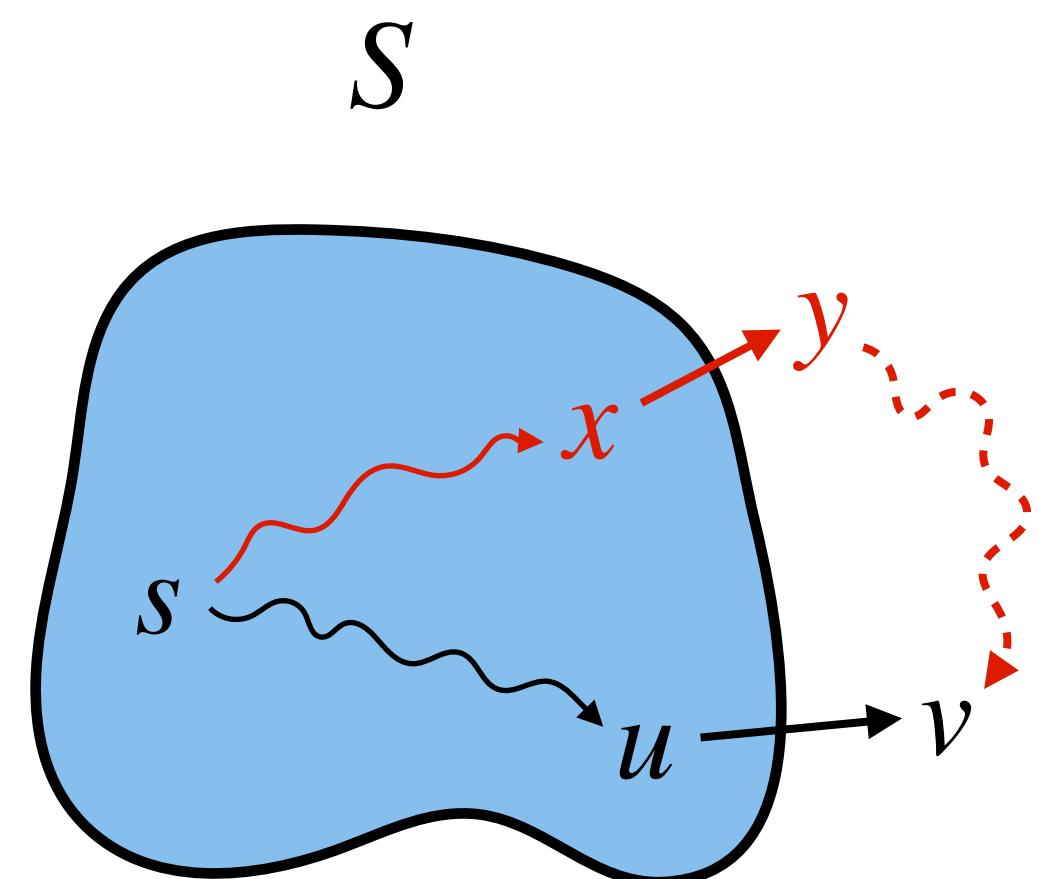
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y)$$



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

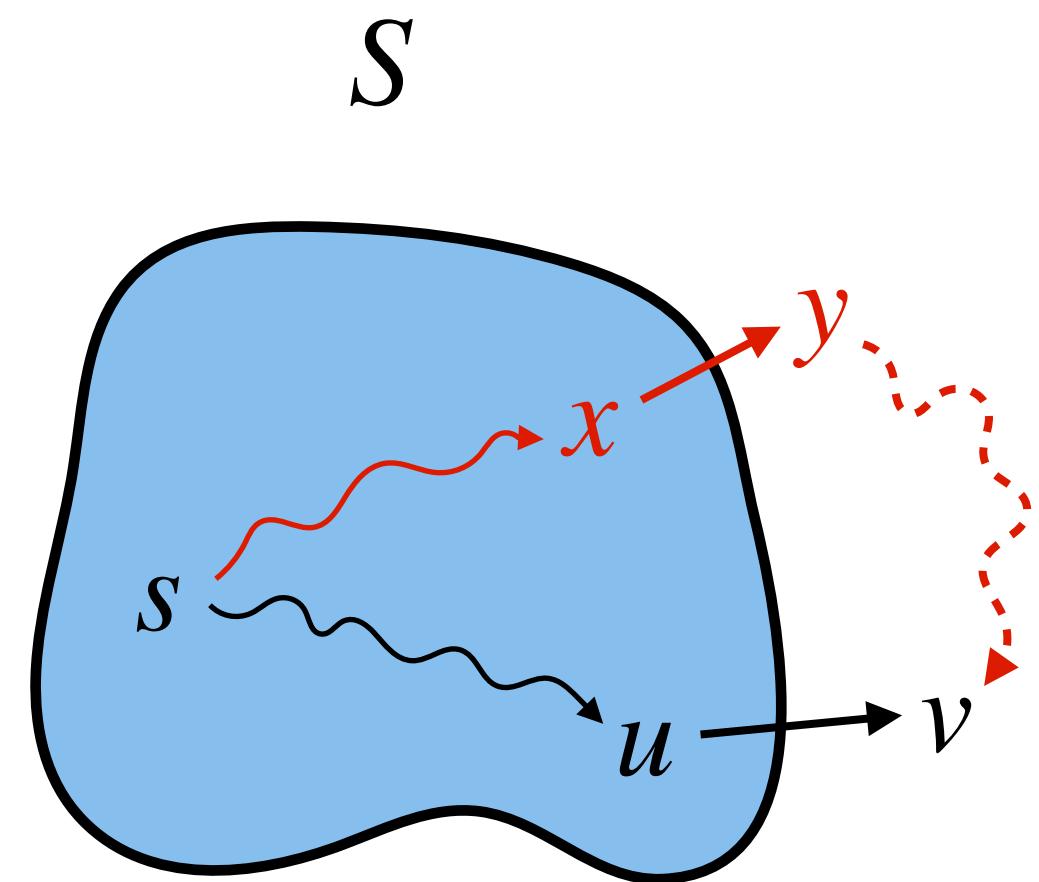
$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y)$$

Definition of π



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

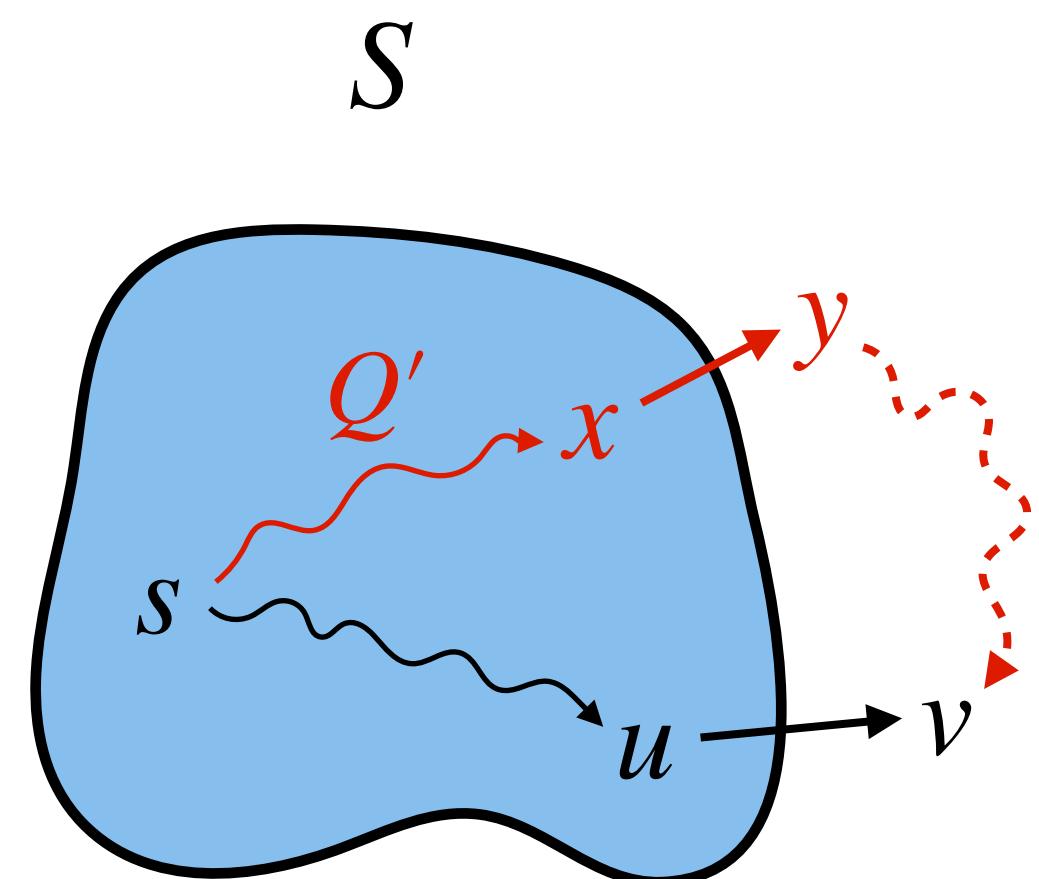
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y)$$



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

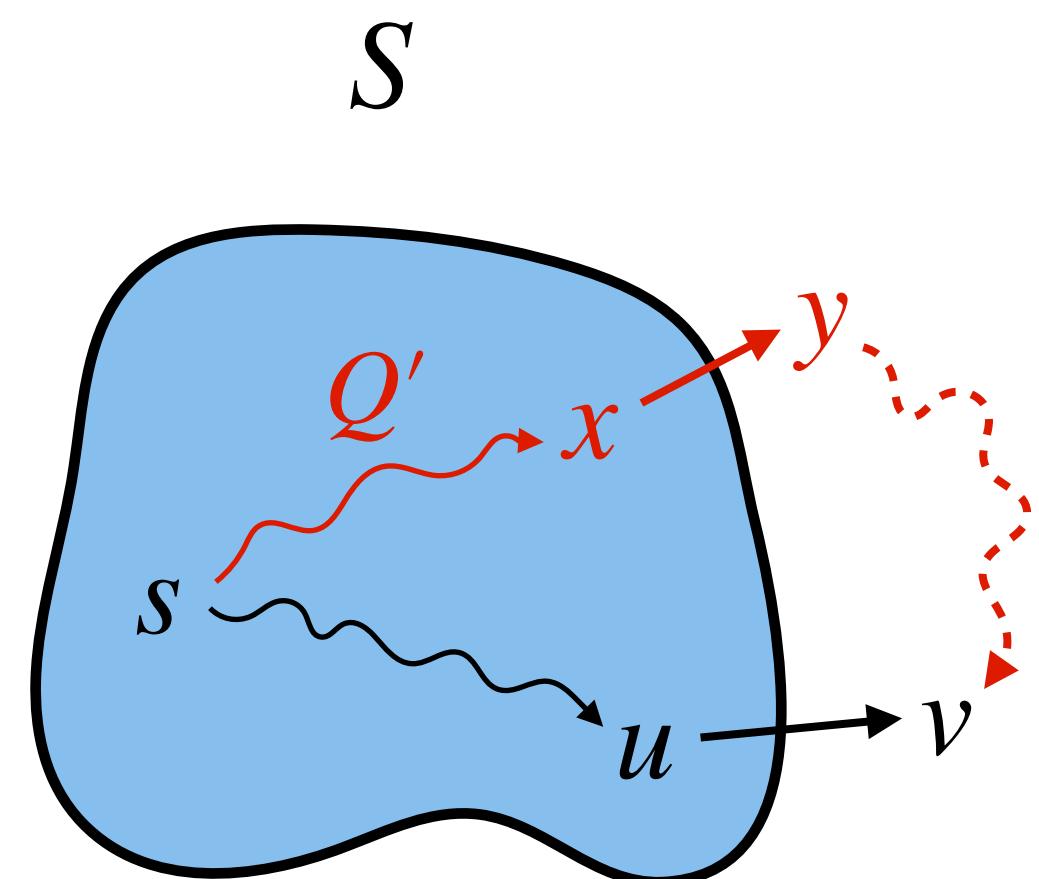
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y)$$



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

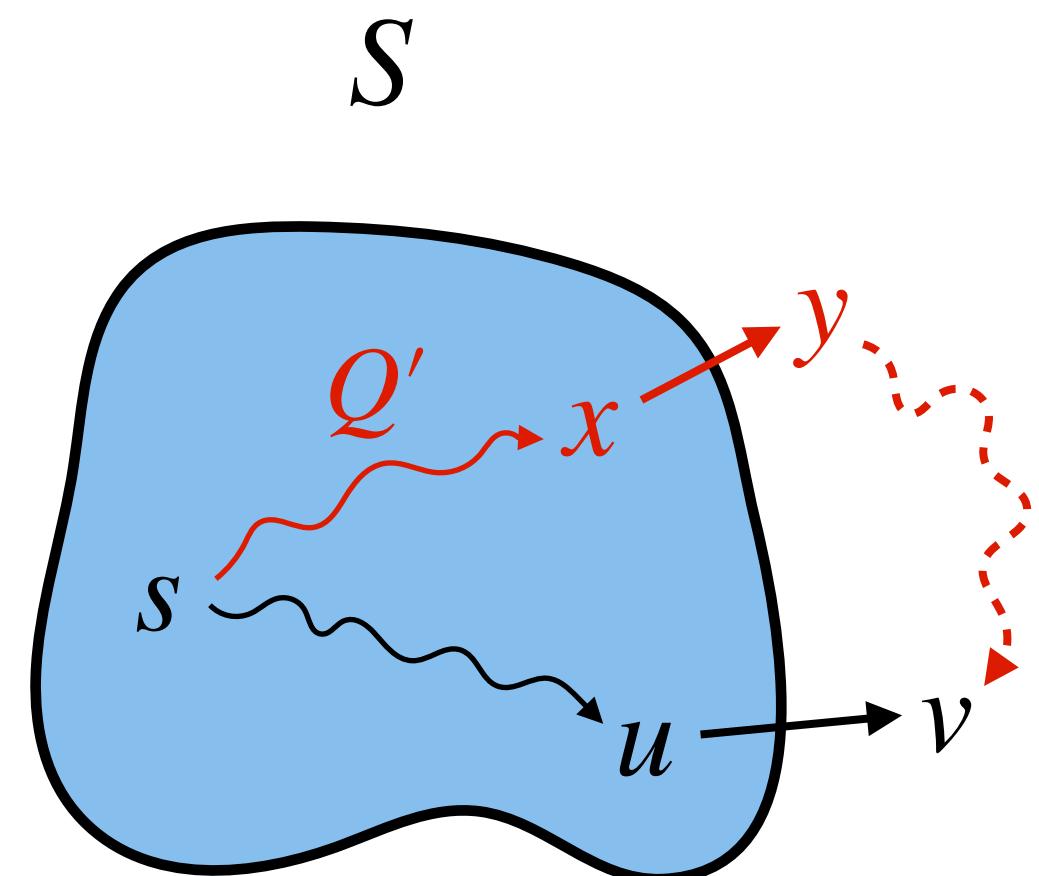
$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y)$$

Because x is in S



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

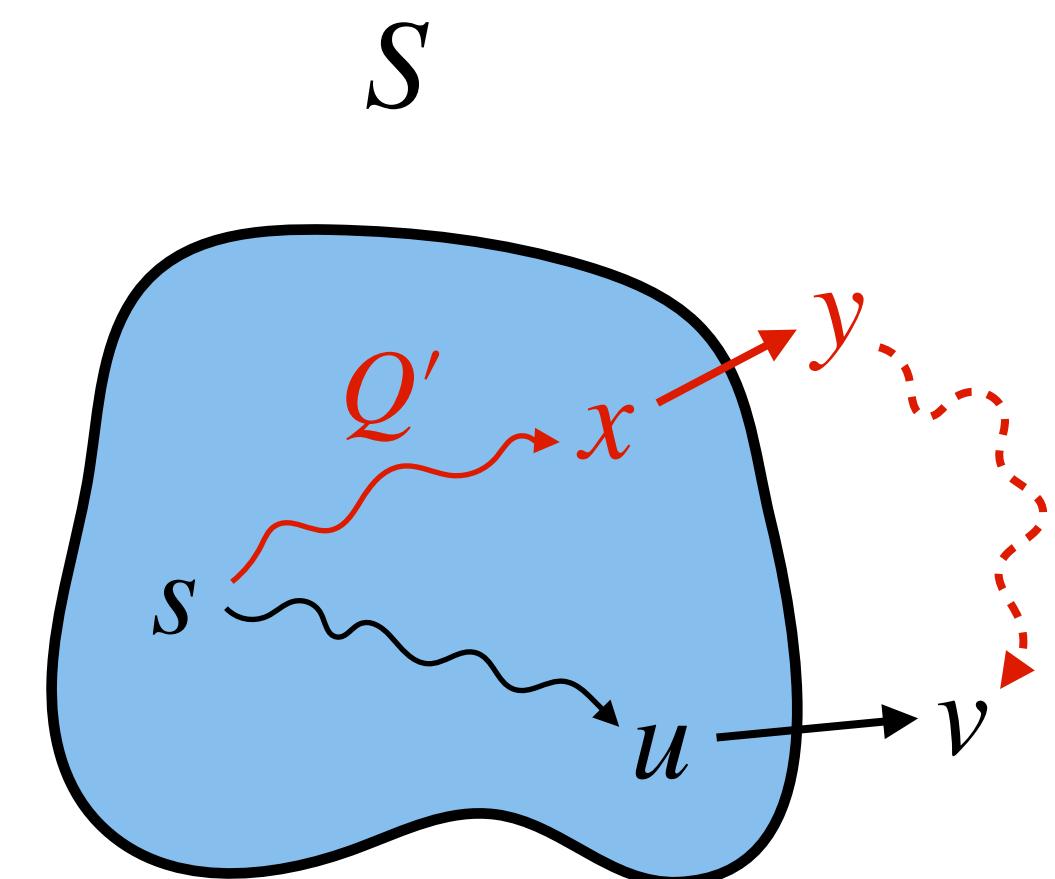
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y) \leq w(Q)$$



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

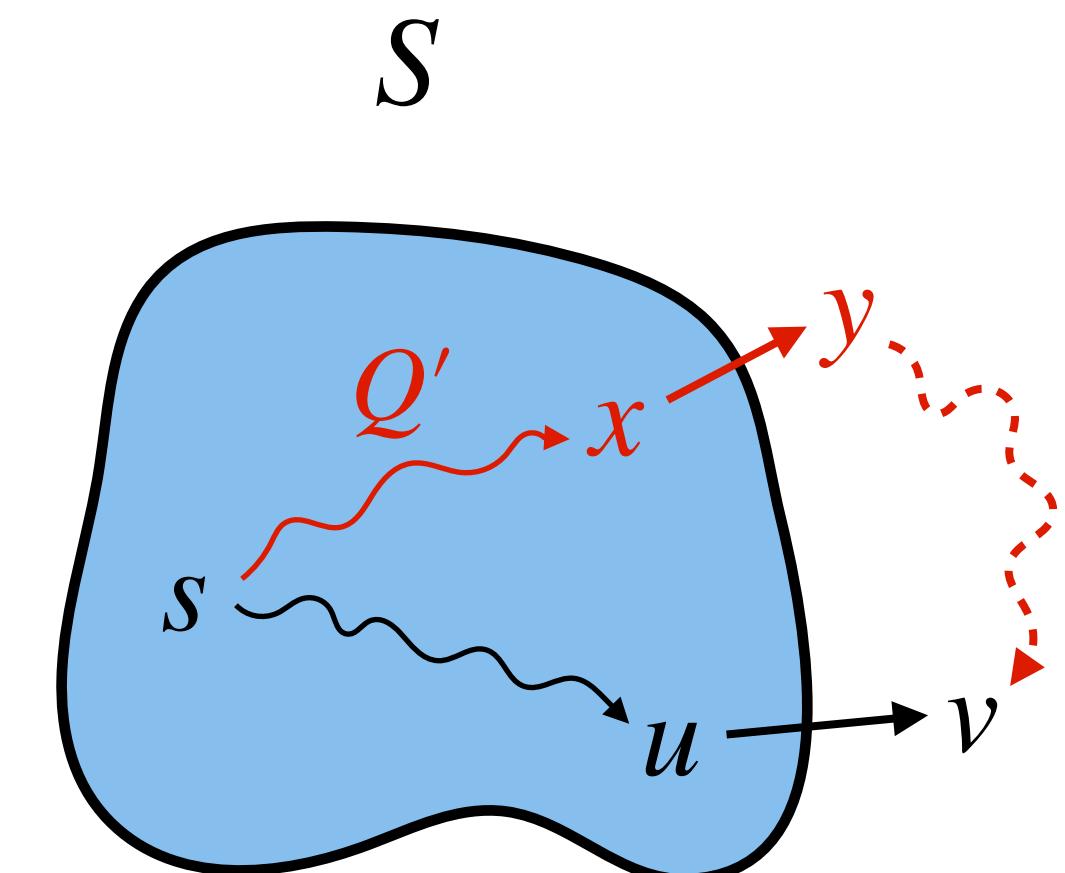
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y) \leq w(Q)$$



Because y to v subpath in Q will have non-negative weights

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

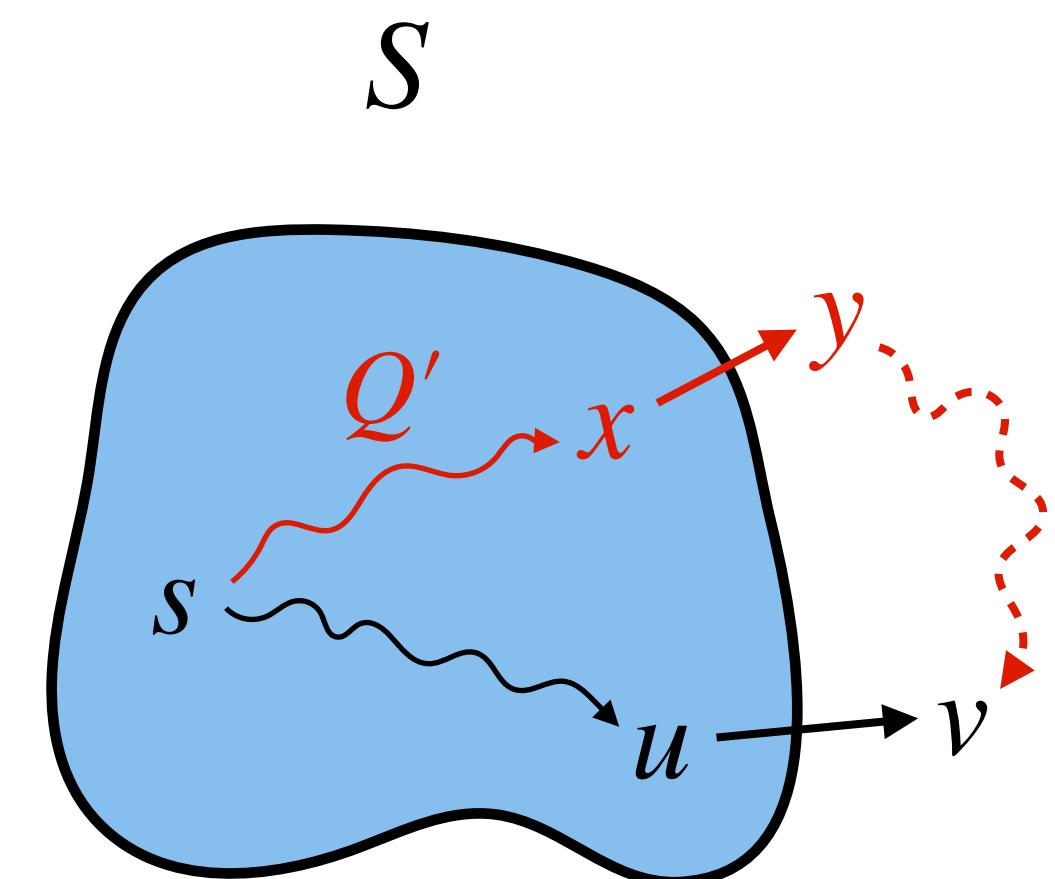
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y) \leq w(Q)$$



Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

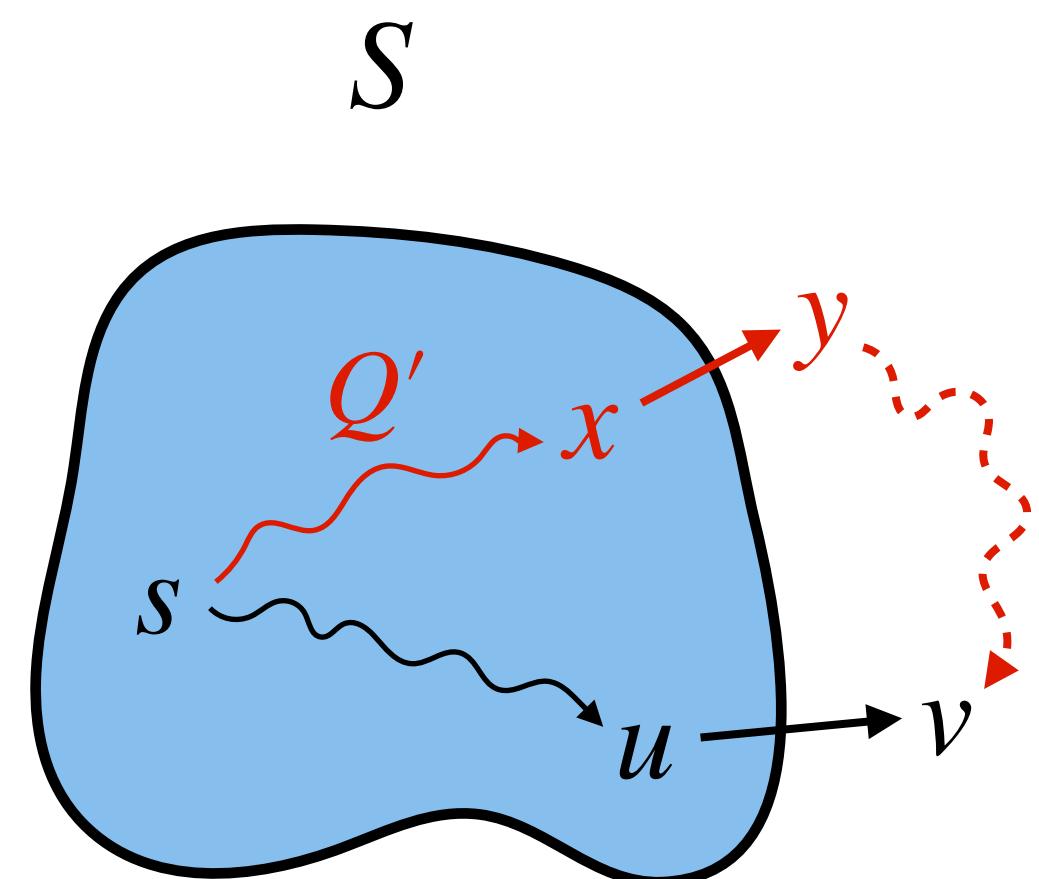
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y) \leq w(Q)$$



We have proven that a uv -path, P , exists of weight $\pi[v]$

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

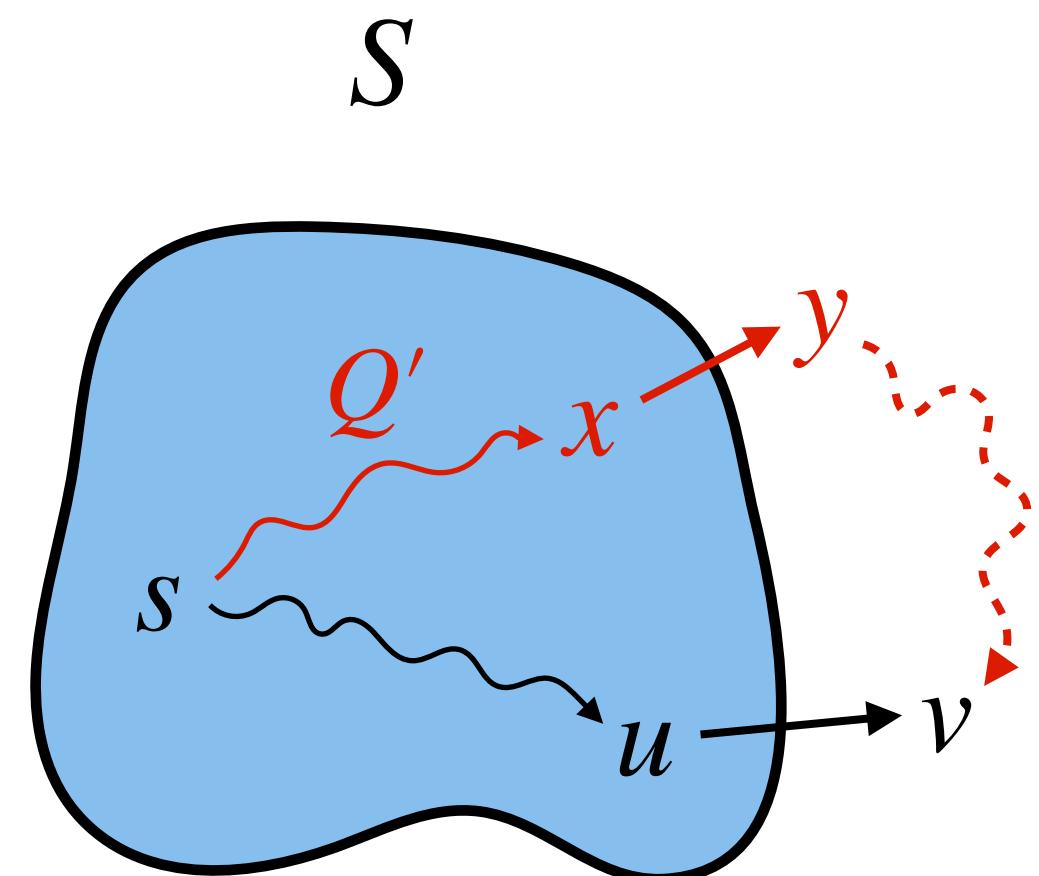
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y) \leq w(Q)$$



We have proven that a uv -path, P , exists of weight $\pi[v]$ and no other uv -path has

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

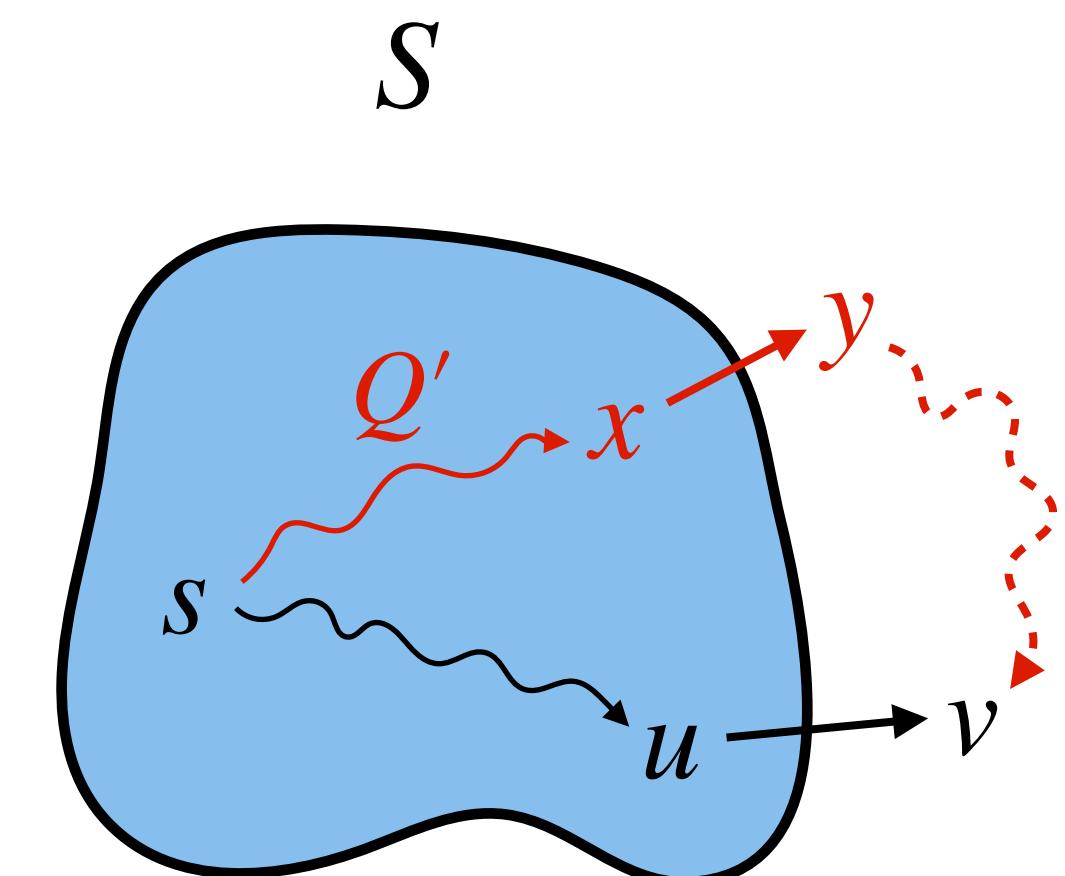
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y) \leq w(Q)$$



We have proven that a uv -path, P , exists of weight $\pi[v]$ and no other uv -path has weight less than $\pi[v]$.

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

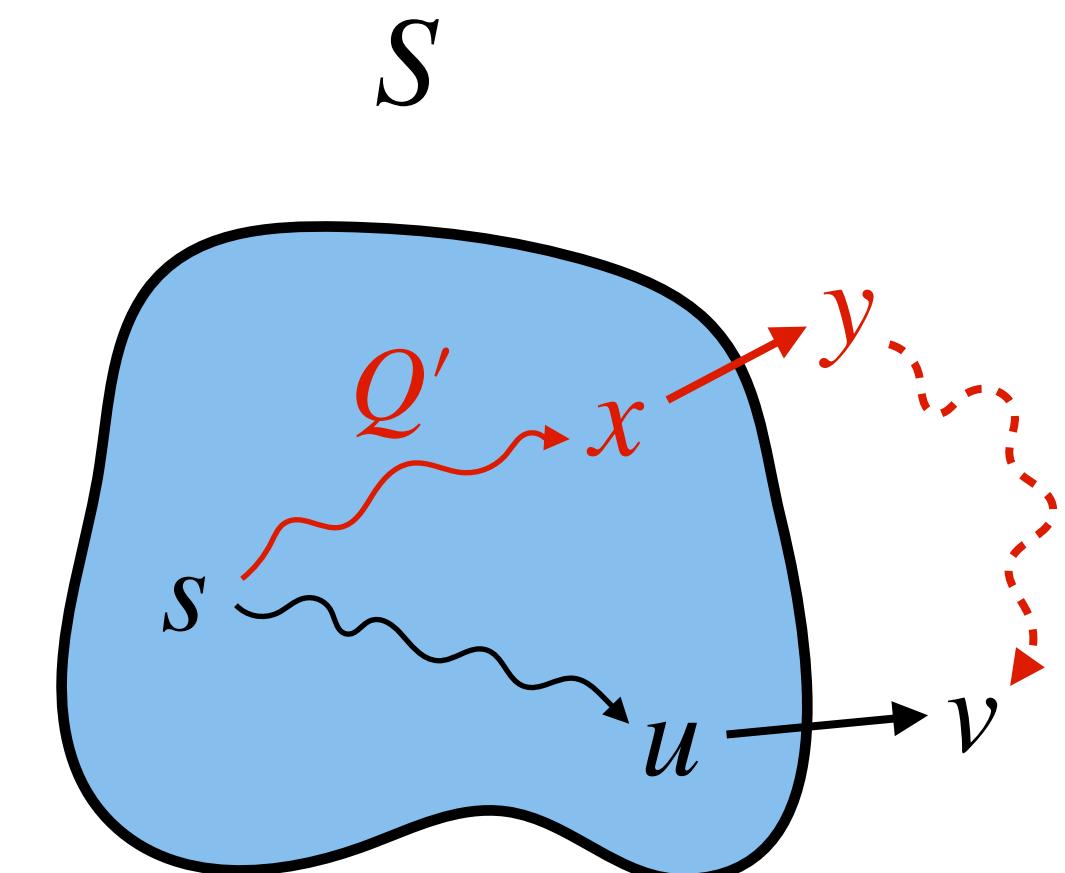
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y) \leq w(Q)$$



We have proven that a uv -path, P , exists of weight $\pi[v]$ and no other uv -path has weight less than $\pi[v]$. Hence, $\pi[v]$ is the weight of a **shortest path to v** .

Dijkstra's Algorithm: Correctness

Theorem: In the previous algorithm, for every $u \in S$, $d[u] = \delta(s, u)$.

Proof: Inductive Step: Assume the statement is true for some S such that $|S| \geq 1$.

Let v be the next vertex to be added to S through edge (u, v) .

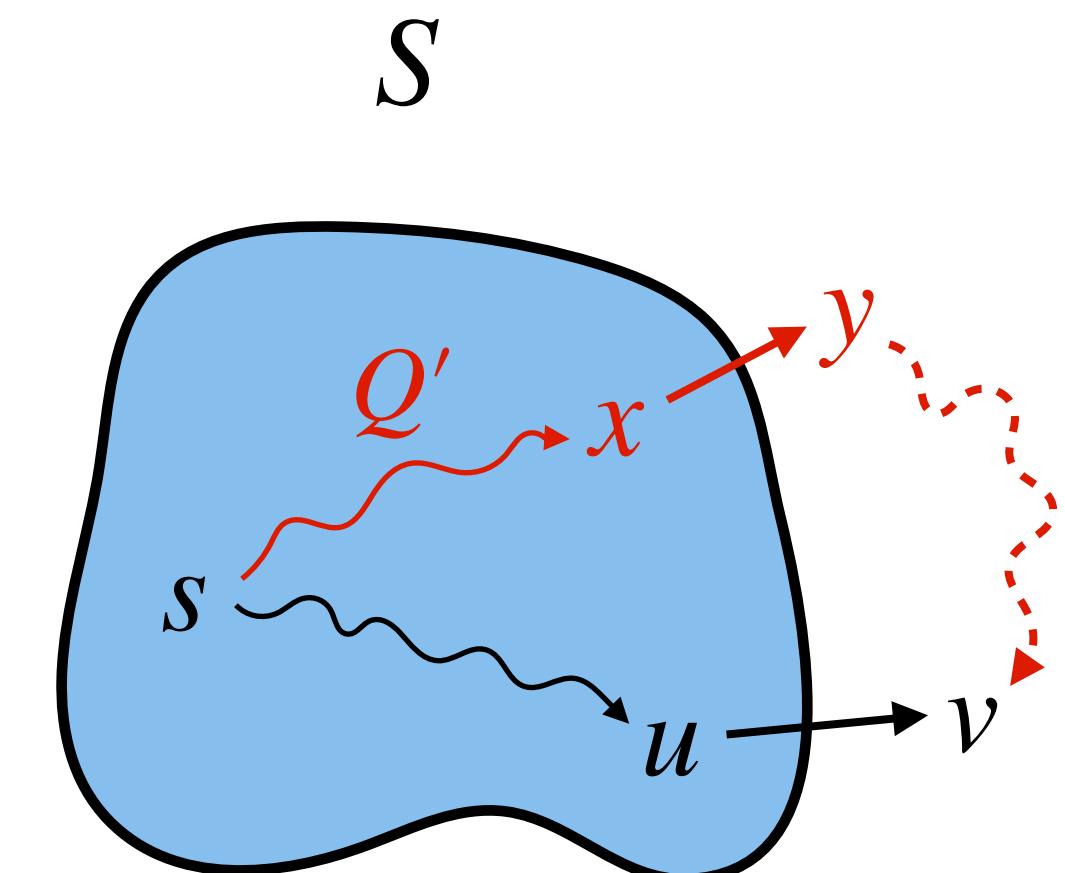
Let path P = a shortest $s \rightsquigarrow u$ path followed by edge (u, v)

$$w(P) = d[u] + w(u, v) = \pi[v]$$

Take any other path Q from s to v . We claim that $w(Q) \geq w(P)$.

Let (x, y) be the first edge on Q going from S to $V \setminus S$.

$$w(P) = \pi(v) \leq \pi(y) \leq d[x] + w(x, y) \leq w(Q') + w(x, y) \leq w(Q)$$



We have proven that a uv -path, P , exists of weight $\pi[v]$ and no other uv -path has weight less than $\pi[v]$. Hence, $\pi[v]$ is the weight of a **shortest path to v** . ■

Dijkstra's Algorithm: Sketch

Maintain a set of explored vertices S for which algorithm has found $d[u] = \delta(s, u)$:

Step 1: Initialise $S = \{s\}$, $d[s] = 0$.

Step 2: Choose an unexplored vertex v from $V \setminus S$ which minimizes:

$$\pi[v] = \min_{(u,v) \in E, u \in S} d[u] + w(u, v)$$

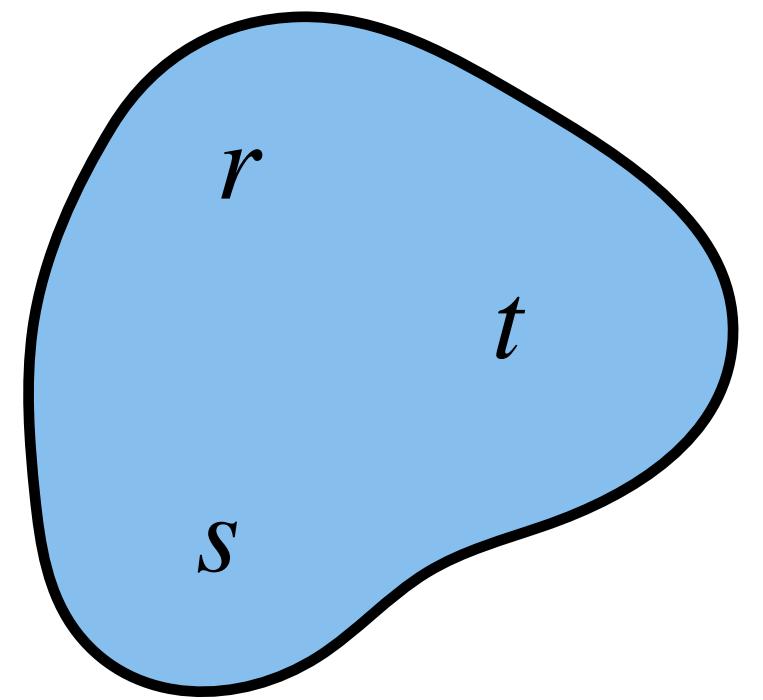
Add v to S and set $d[v] = \pi[v]$.

Step 3: Go to **Step 2** if it can be performed.

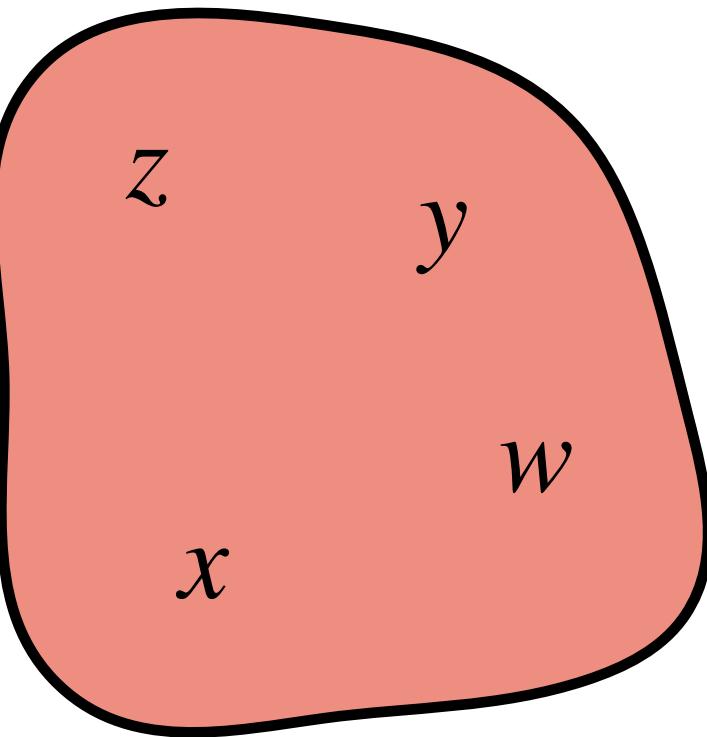
Dijkstra's Algorithm: Optimization

Computed $\pi[v]$ values of $V \setminus S$.

S



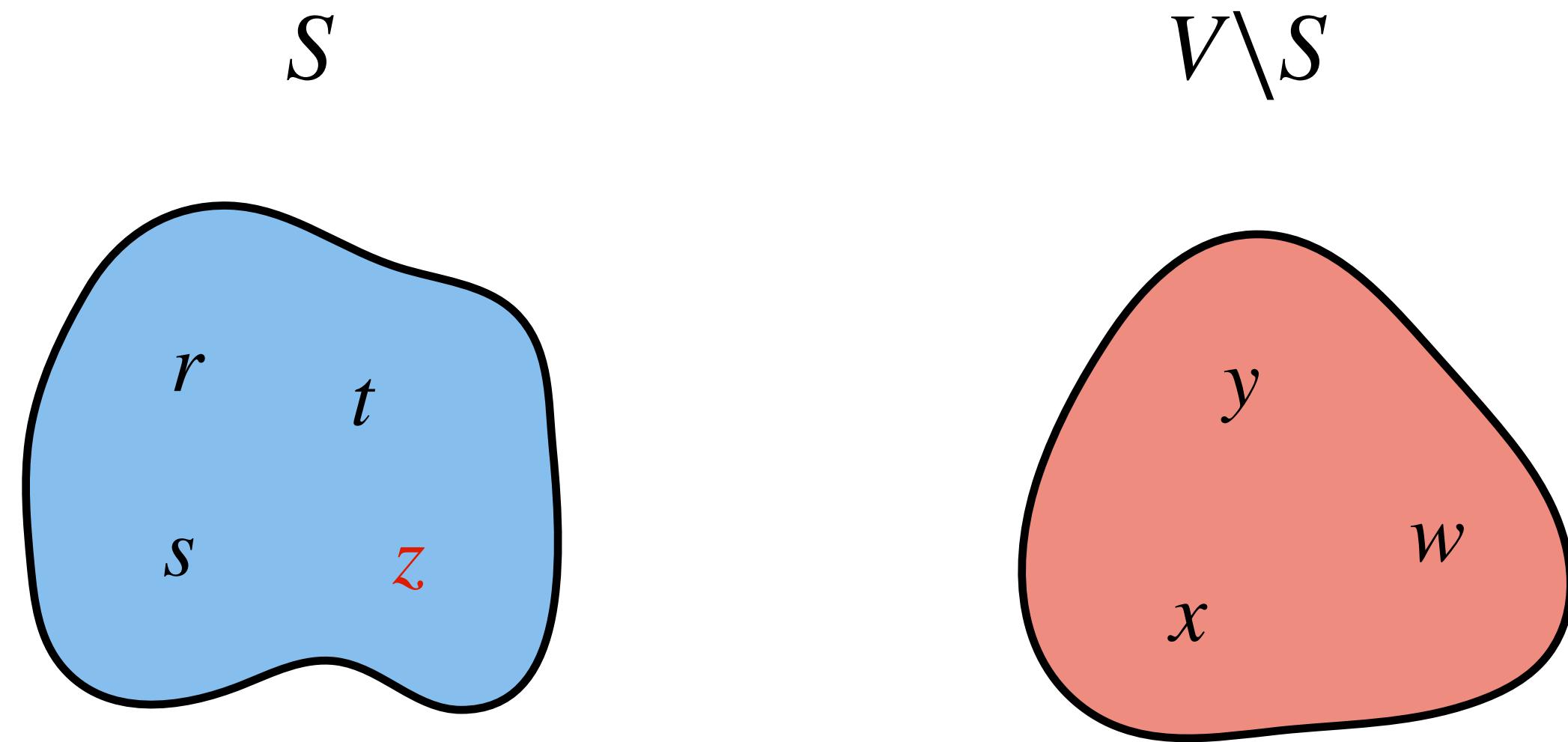
$V \setminus S$



$$d[s] = 0, d[r] = 3, d[t] = 2$$

$$\pi[z] = 4, \pi[y] = 8, \pi[x] = 6, \pi[w] = \text{Invalid}$$

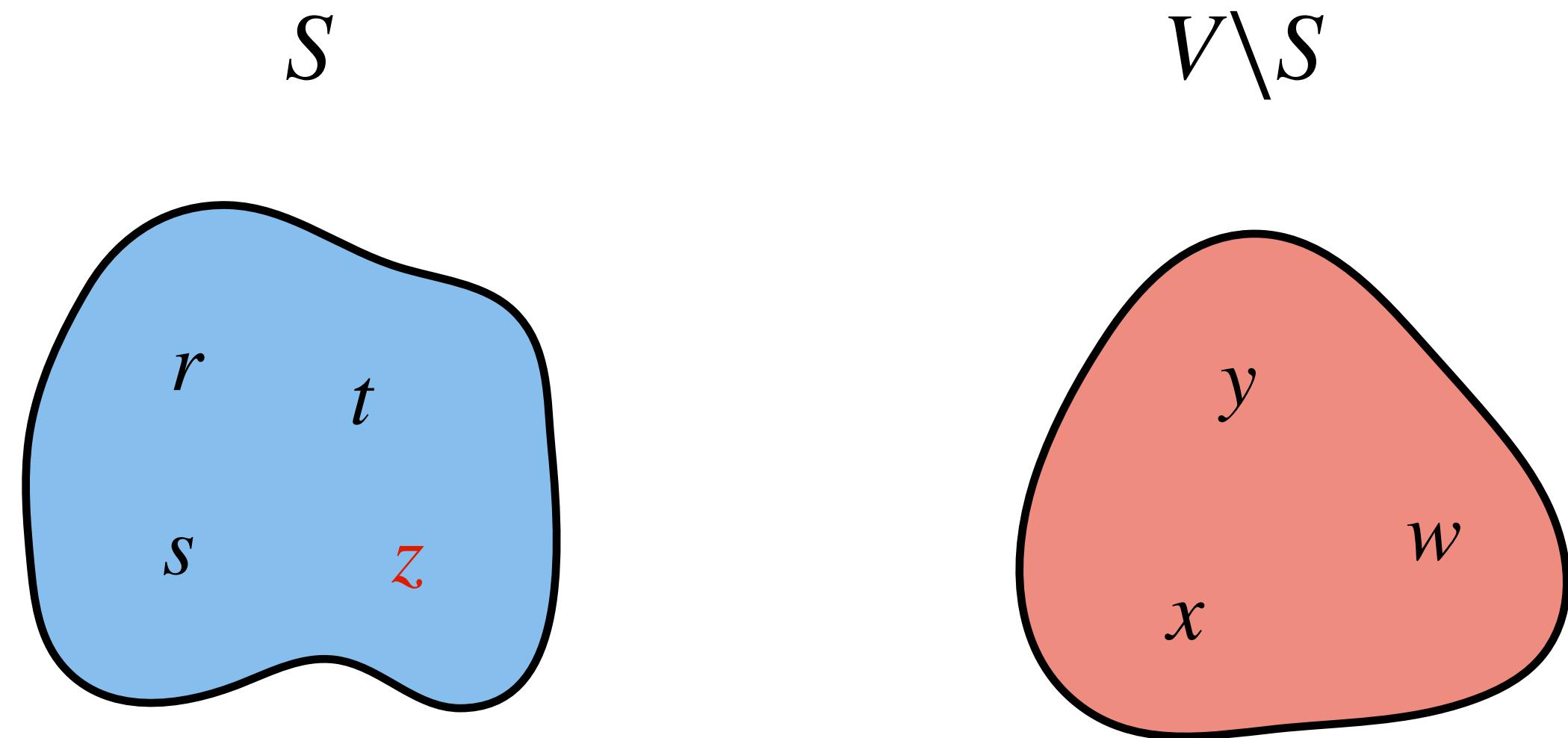
Dijkstra's Algorithm: Optimization



$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

Dijkstra's Algorithm: Optimization

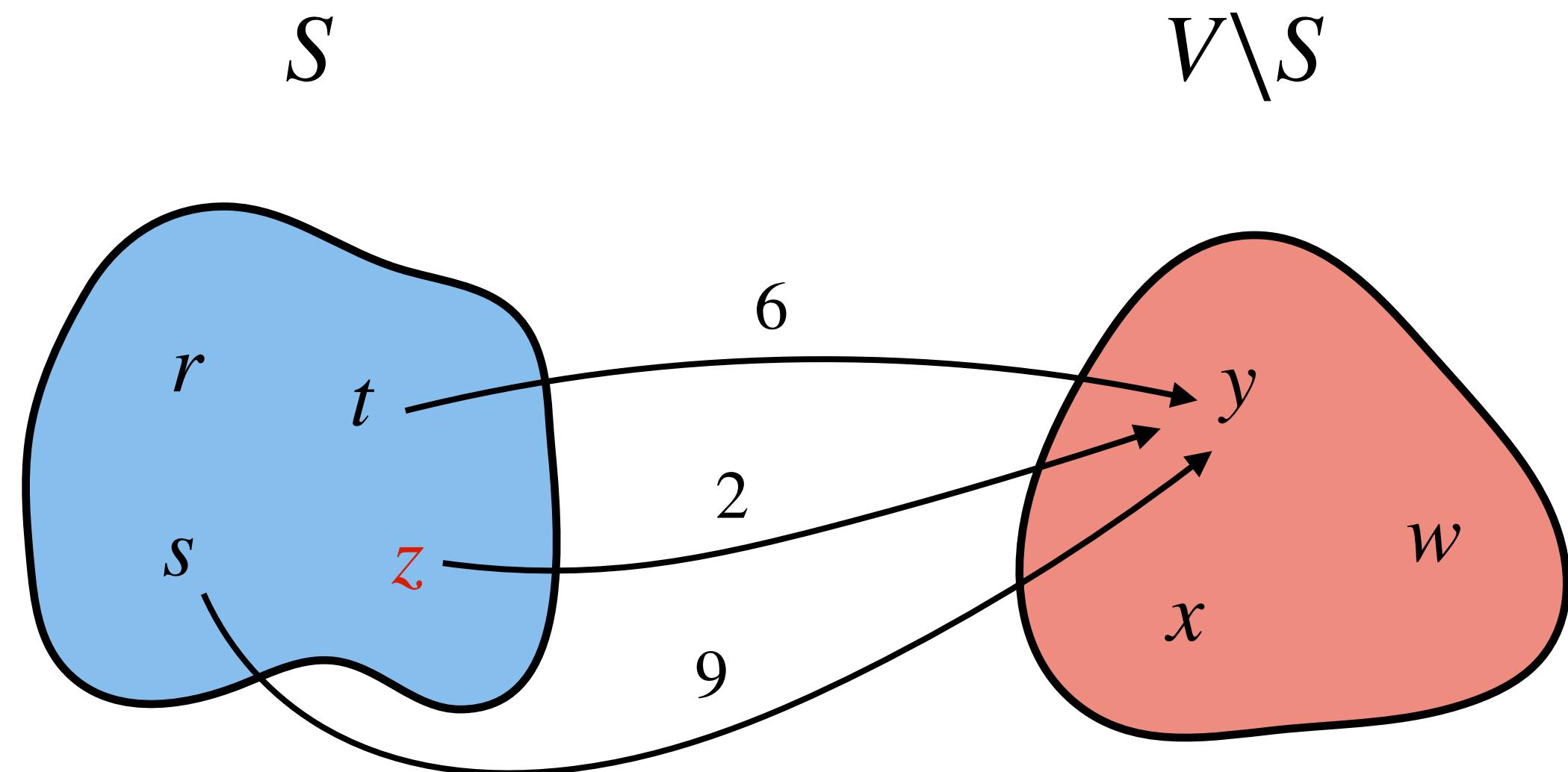
Computing new $\pi[v]$ values after updating S .



$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

Dijkstra's Algorithm: Optimization

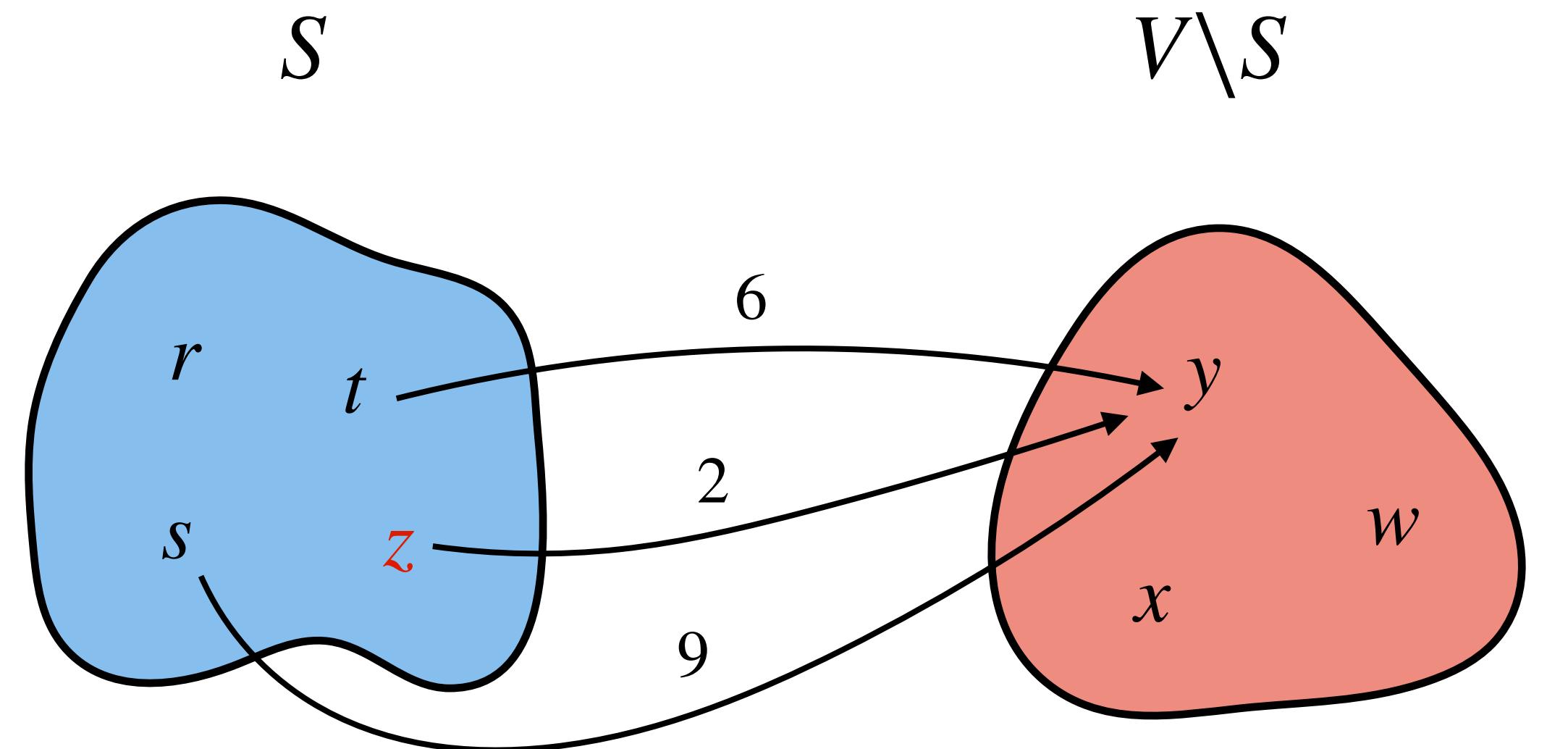
Computing new $\pi[v]$ values after updating S .



$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

Dijkstra's Algorithm: Optimization

Computing new $\pi[v]$ values after updating S .

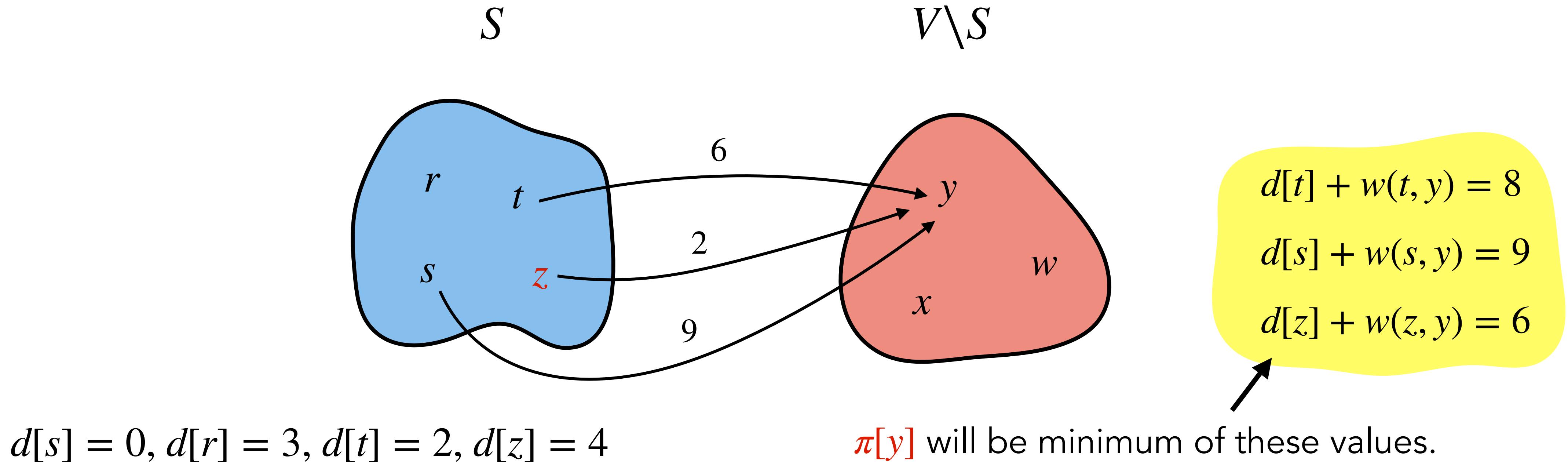


$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

$\pi[y]$ will be minimum of these values.

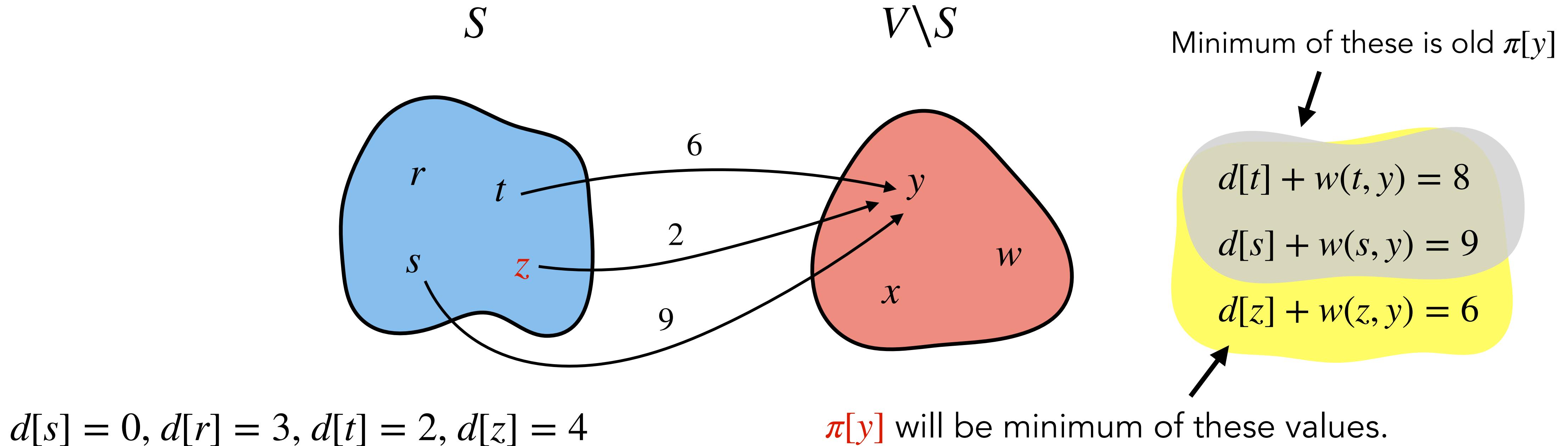
Dijkstra's Algorithm: Optimization

Computing new $\pi[v]$ values after updating S .



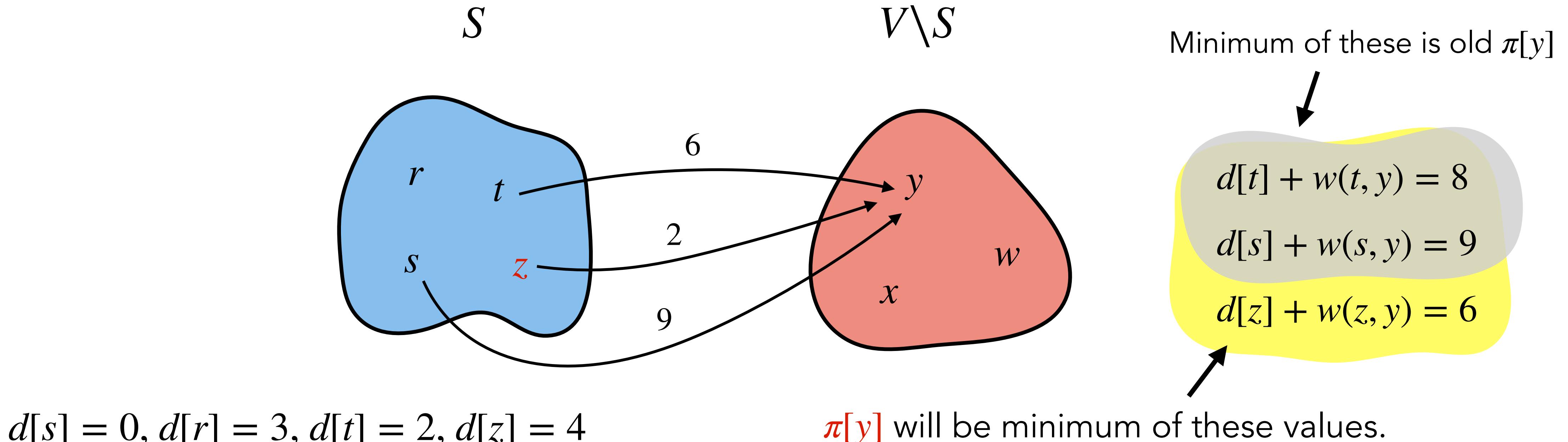
Dijkstra's Algorithm: Optimization

Computing new $\pi[v]$ values after updating S .



Dijkstra's Algorithm: Optimization

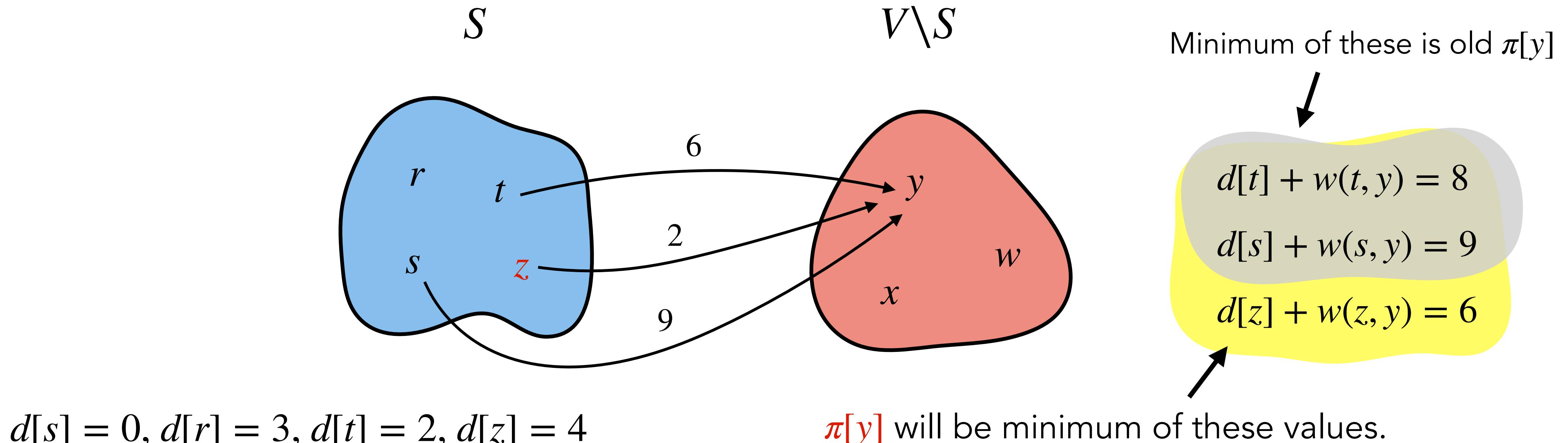
Computing new $\pi[v]$ values after updating S .



Observation: Let u be the vertex just added to S .

Dijkstra's Algorithm: Optimization

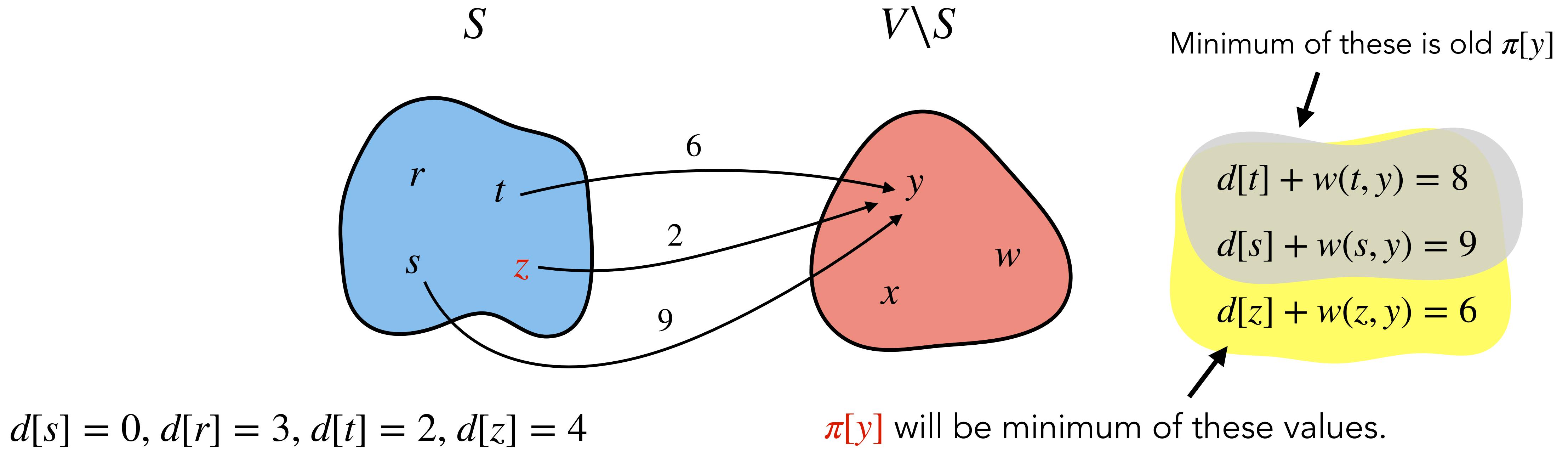
Computing new $\pi[v]$ values after updating S .



Observation: Let u be the vertex just added to S . Then, $\forall v \in V \setminus S$, such that (u, v) is an edge,

Dijkstra's Algorithm: Optimization

Computing new $\pi[v]$ values after updating S .

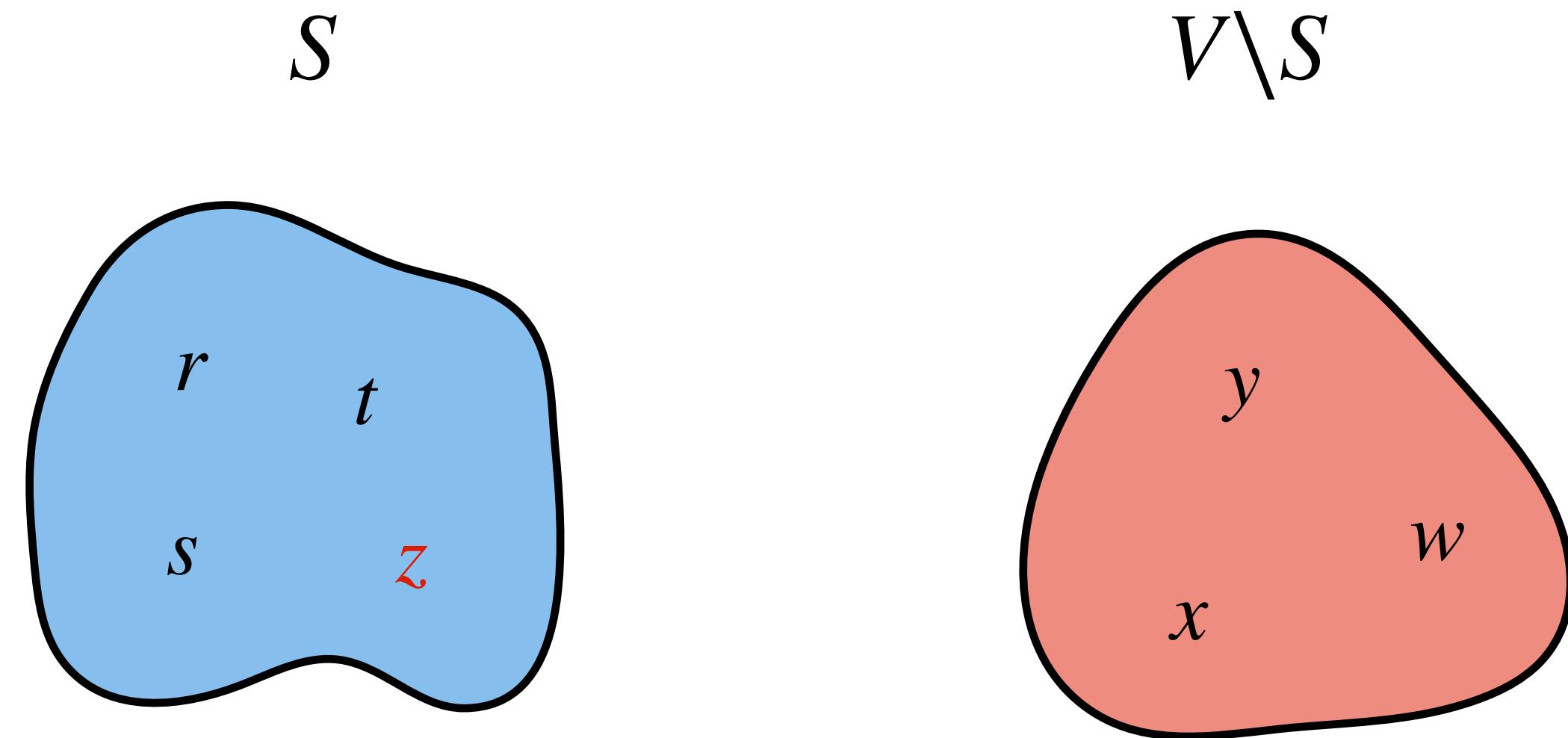


Observation: Let u be the vertex just added to S . Then, $\forall v \in V \setminus S$, such that (u, v) is an edge,

$$\pi[v] = \text{Min}(\pi[v], d[u] + w(u, v))$$

Dijkstra's Algorithm: Optimization

Computing new $\pi[v]$ values after updating S .



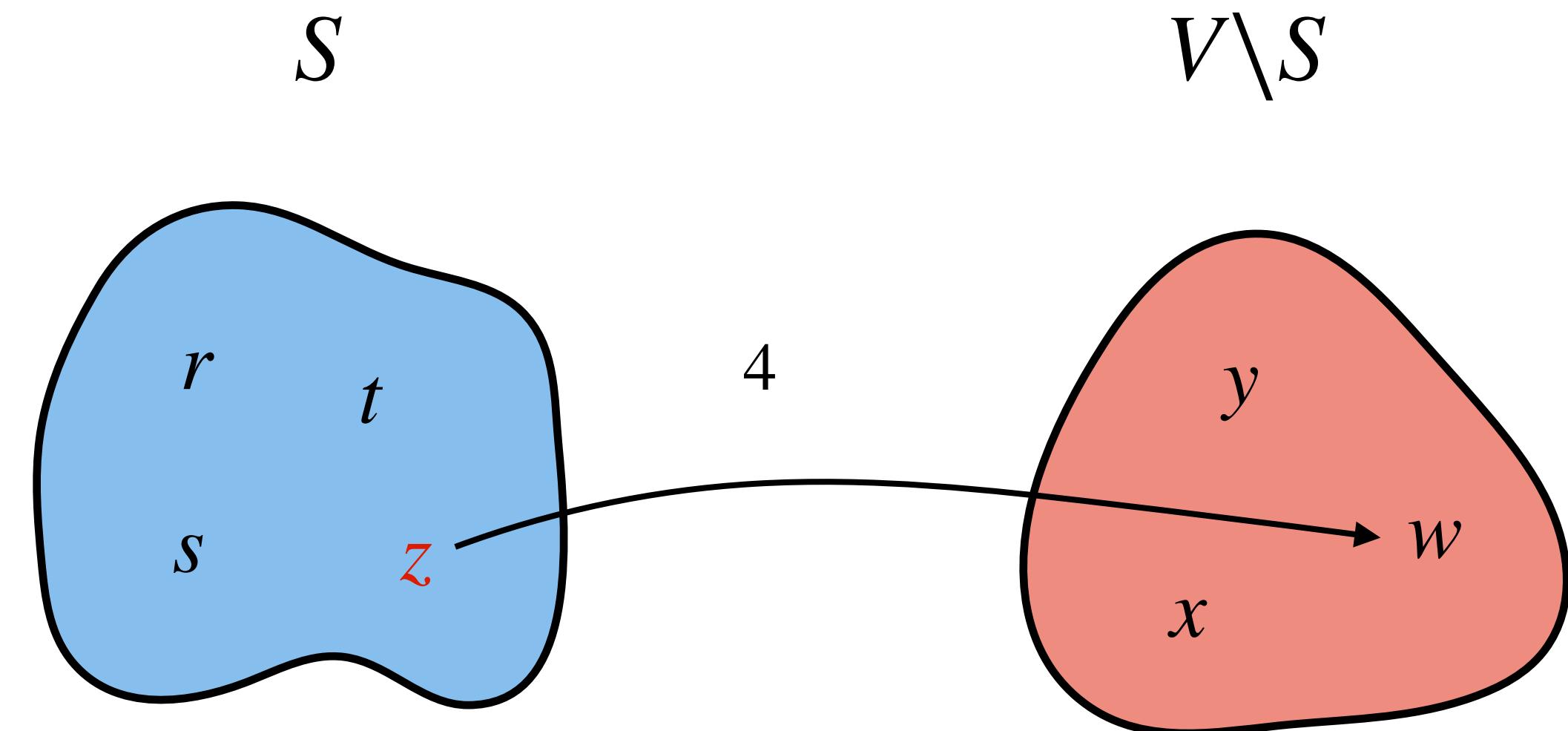
$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

Observation: Let u be the vertex just added to S . Then, $\forall v \in V \setminus S$, such that (u, v) is an edge,

$$\pi[v] = \text{Min}(\pi[v], d[u] + w(u, v))$$

Dijkstra's Algorithm: Optimization

Computing new $\pi[v]$ values after updating S .



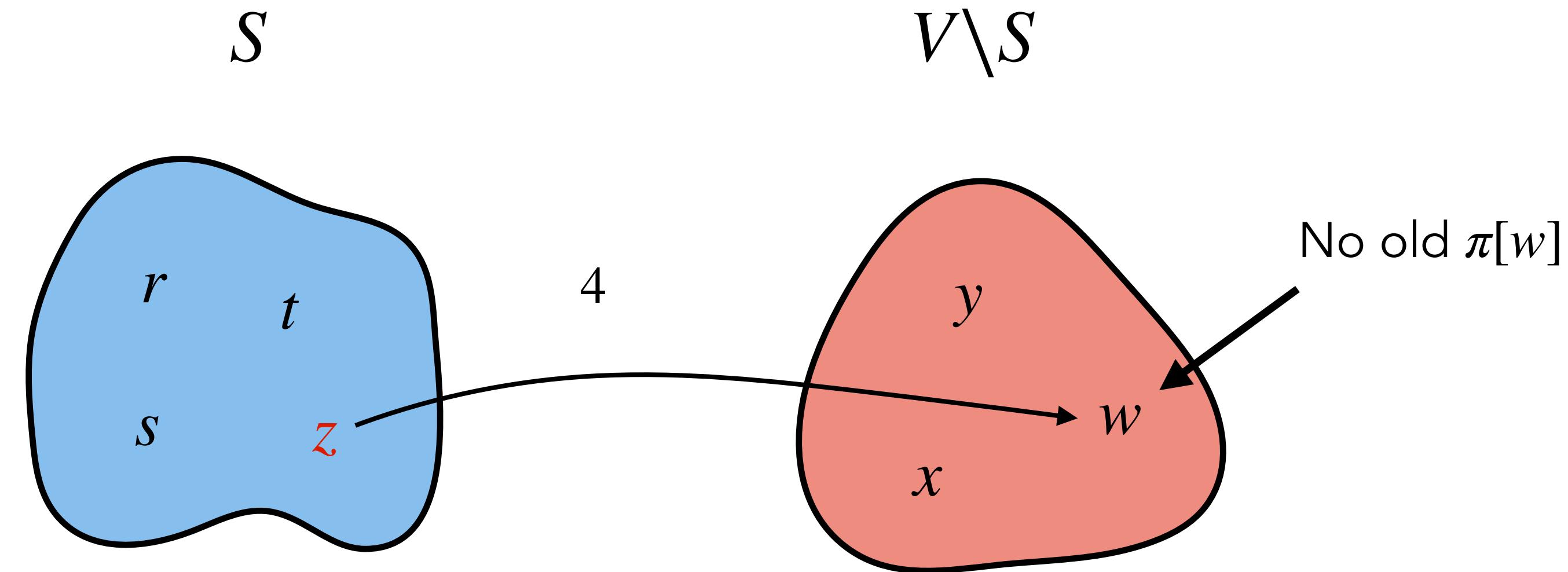
$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

Observation: Let u be the vertex just added to S . Then, $\forall v \in V \setminus S$, such that (u, v) is an edge,

$$\pi[v] = \text{Min}(\pi[v], d[u] + w(u, v))$$

Dijkstra's Algorithm: Optimization

Computing new $\pi[v]$ values after updating S .



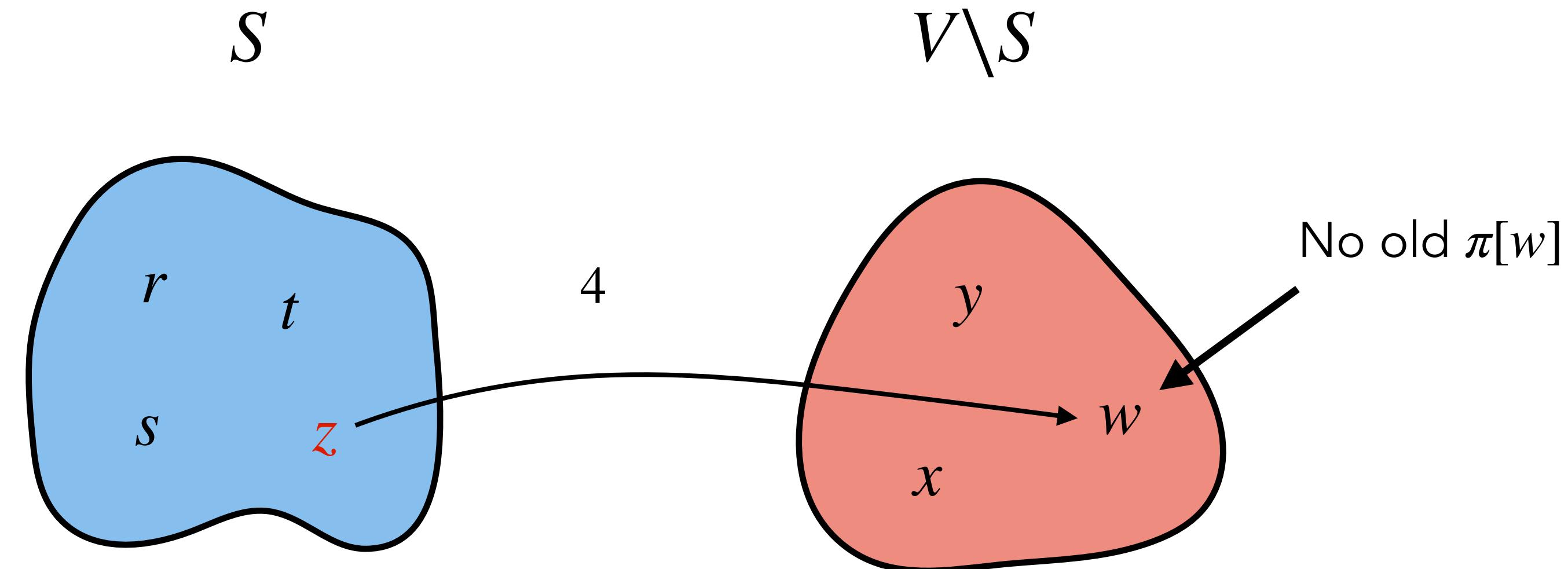
$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

Observation: Let u be the vertex just added to S . Then, $\forall v \in V \setminus S$, such that (u, v) is an edge,

$$\pi[v] = \text{Min}(\pi[v], d[u] + w(u, v))$$

Dijkstra's Algorithm: Optimization

Computing new $\pi[v]$ values after updating S .



$$d[s] = 0, d[r] = 3, d[t] = 2, d[z] = 4$$

Observation: Let u be the vertex just added to S . Then, $\forall v \in V \setminus S$, such that (u, v) is an edge,

$$\pi[v] = \text{Min}(\pi[v], d[u] + w(u, v))$$

Idea: Start with $\pi[v] = \infty$ for every $v \in V \setminus \{s\}$ and keep updating π values using above relation.